Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions

Probing the structure of the atomic nucleus

Raphaël Dupré

Table of Content

Lepton scattering on the nucleon

- Overview of the structure functions
- Form factors (FFs)
 - The proton radius puzzle
- Parton distribution functions (PDFs)
- Generalized parton distributions (GPDs)
- Transverse momentum dependent PDFs

Lepton scattering on the nucleus

- Treating the nucleus in hadronic physics
- Nuclear FFs
- Nucleon dynamic
 - Short range correlated nucleon pairs
- Nuclear PDFs
 - The EMC effect
- The nucleus in terms of quarks and gluons
- Summary and perspectives

Part 2: Lepton-Nucleus

The nucleus in hadron physics

We have two coexisting pictures

- A nucleus made of protons and neutrons
- A nucleus made of quarks and gluons somewhat bound into nucleons

Main question:

- What are the right degrees of freedom?

Answer:

- It depends what you are trying to do

Nuclear Form Factors

Very similarly to protons

- Elastic scattering on nuclei provides information on their size and charge distribution
- Large spins give access to non spherical components
- Mostly described in terms of classic protons and neutrons

Large momentum transfer

- Give access to configurations where nucleons are close together
- Raise the question of nucleon overlap and its effect

Deuteron Form Factors

Deuterium has an extra form factor

- Allows to measure the quadrupole moment
- Gives access to the shape of deuterium

Very important measurement in nuclear physics

- Strong constraint on the N-N force
- Necessitate a relativistic treatment of the nucleus

Nuclear radius

No puzzle here!

 Muonic atoms of light nuclei do not show any deviation from electronic ones

Radius of unstable nuclei

- Using laser traps and atomic physics measurements
- Combines they allow to measure precisely the radius of unstable nuclei

Z.-T. Lu et al. Rev.Mod.Phys. 85 (2013) 1383

Weak Charge FFs

Similar than for protons, we can look at nuclear weak charge with parity violating assymetries

- In the nucleus, it highlights the contribution from neutrons
- Used to understand the neutron skin of nuclei of interest for low energy nuclear physics

Can be of importance for other higher energy processes

- Particularly when surface interactions are dominating
 - We will discuss some of them later!

Quasi-elastic Scattering (QES)

What is it?

- Elastic scattering on a bound nucleon

Are bound nucleons modified?

- It seems so, but there are many caveats
- Reinteractions with nuclear fragments are likely
 - Final state interactions
- Initial state nucleon are off their mass shell
 - We actually measure transition form factors

This remains an open question

- Much more to come on the topic

O. Benhar et al. Rev.Mod.Phys. 80 (2008) 189-224

Nuclear Dynamic

Nucleon kinematics can be inferred from QES

- Using the extra momentum of the reaction
- Similarly to previous discussion this is subject to corrections

We find two regions

- Low momentum from Fermi motion
- High momentum contribution from short range correlated nucleon pairs (SRC)

Past but coming back

- Recent calculations of nuclear dynamic are often beyond these methods
- Yet it is making a comeback to look into SRC pairs

Short Range Correlated Nucleons

Recent studies of SRC pairs

- They have a universal behavior linked to the NN potential
- They are dominated by np pairs rather than pp or nn
 - This holds for neutron rich nuclei
- The tensor nuclear force dominates in this kinematic region

Can they modify the nuclear structure ?

- More on this later

O. Hen et al. Rev.Mod.Phys. 89 (2017) no.4, 045002

- C. Ciofi degli Atti, Physics Reports 590 (2015) 1-85
- L. Frankfurt et al. Int.J.Mod.Phys. A23 (2008) 2991-3055

Nuclear PDFs

Measurement of nuclear PDFs was very surprising

- Shadowing
- Anti-shadowing
- EMC effect
- Fermi motion

Lot of theoretical activity

- Very little consensus

Nuclear PDFs

Similar issues than for the nucleon

- Made worst by additional complications
- Masses are large
 - Either make tighter cuts
 - Or apply corrections

Amount of data is limited

- No nuclei in A1 and Zeus

- Hope for an EIC are high for this
- Leads to a reduced number of parameters i.e. model assumptions

Summary

- We observe the effects but with limited resolution
- Gluons, sea and even d are mostly unknown

Shadowing

Linked to multiple scattering

- Screening of some nucleons
- Several calculation methods available
 - Including CGC
- They diverge largely at lower x

Data is very limited

- Low x coincide with low Q^2
- Below 10⁻² is barely explored

Strong impact on LHC

- Relevant x range for PbPb collisions at LHC
- Very important phenomena to understand initial state in HIC

N. Armesto, J.Phys. G32 (2006) R367-R394

Anti-Shadowing

The least discussed nuclear effect

Mostly assumed to be there to satisfy sum rules

 A very unsatisfactory explanation

Few shadowing models have better integration of the effect

- Anti shadowing being the constructive equivalent of the shadowing
- Leads to flavor behaviors still to be experimentally measured
 - As you will see, flavor dependent effects in nuclei are major issues

EMC Effect

The most studied

- Much data from SLAC and JLab
- Now known at the percent level for many nuclei

Easily described by models

- It is only a 1D effect
- Many, many models and lots of litterature:

 O. Hen et al. Rev.Mod.Phys. 89 (2017) no.4, 045002
 0.35

 S. Malace et al. Int.J.Mod.Phys. E23 (2014) no.08, 1430013
 0.30

 P.R. Norton, Rept.Prog.Phys. 66 (2003) 1253-1297
 0.25

 Irst explanations
 0.25

First explanations eventually failed

- The most popular involved including pions in the nuclei
- Now the A dependence is often used to discriminate

Fermi Motion

The only part that was expected

- In experiment however the effect is at higher x
- Meaning the EMC effect is that much stronger

Beware, this is not as straight forward as it might seem

- The momentum distributions in nuclei are not simple
- Fast nucleons should be highly virtual

Describing the Nucleus

So why is it so difficult to describe the nucleus?

- There is some overlap between nucleons
 - Which may or may not be significant
- No one knows what happens to virtual nucleons
 - *Rescaling x or Q2 in nuclei can describe the EMC effect*
 - They have completely different physics meaning

- There might be other objects in the nucleus

- Is the nuclear force affecting the nucleon's structure?
- Are close nucleons forming bound 6, 9 or even 12q bags?

At the same time the nucleus is a complex object

- We are starting to link the low energy nuclear aspects with hadron physics aspects
 - At the theoretical level with more and more advanced calculations
 - At the experimental level with short range correlation and soon tagging

Mean Field Treatment

One can apply a mean field to nucleons

- Necessitate a model of the nucleon
- Here the nucleon is modified by the scalar mean field

The nucleon wave function gets modified

- Hopefully you obtain a good description of the EMC effect
- Mean field treatment is unable to describe light nuclei
 - Which we know better in principle

- However they can make predictions for other observables

• Polarized EMC effect here for example

Model from I. Cloet et al. Phys.Rev.Lett. 95 (2005) 052302

Nutev Anomaly

The same model predicts important flavor effects

- These can have major impact on experiments

- The Nutev anomaly is a famous example

- Nutev is a neutrino scattering experiment in Fermi Lab
- They measured weak mixing angle and found a discrepancy
- The problem appears to be that neutrino scattering experiments use nuclear targets, which flavor structure is unknown

One could see Nutev as the first evidence of such flavor dependent nuclear effect

Rescaling

Rescaling models had a great deal of success

- They consist on shifting the bound nucleon PDFs
- Because of evolution, it can be done either for x or Q²

Q² Rescaling → Nucleon size increased

$$F_2^{N/A}(x,Q^2) = F_2^N(x,\xi_A(Q^2)Q^2)$$

x Rescaling → Binding reduce quark's momentum

$$F_2^{N/A}(x_A, Q^2, p_1^2) = F_2^{N/A}\left(\frac{x_{Bj}}{z_1^{(A)}}, Q^2\right)$$

$$p_{10} = M_A - \sqrt{(M_{A-1} + E_{A-1}^*)^2 + \vec{P}_{A-1}^2}$$
$$z_1^{(A)} = (p_{10} + |\vec{P}_{A-1}| \eta \cos \theta_{\vec{P}_{A-1}\vec{q}})/M$$

Future of Nuclear Exploration

Understand the nuclei and bound nucleons

- More measurements of the EMC effect are planned
- Most importantly, new observables are being measured

Polarized structure functions

- Highlights some important effects
- Complicated because they are diluted in large nucleus

Using 3D GPDs and TMDs on nuclei

 Experimental challenge taken over in the pas few years

R. Dupré and S. Scopetta, Eur.Phys.J. A52 (2016) no.6, 159

Correlating dynamic with PDFs

- The goal of new tagging measurements
- Detecting nuclear fragments at the same time as the hard scattered electron

GPDs & Nuclei

Nuclei give control over the spin

- Spin-0 → 2 GPD
- Spin-1/2 \rightarrow 8 GPDs
- Spin-1 \rightarrow 18 GPDs
- Half intervene in DVCS

In the nucleus two processes

- Coherent and incoherent channels

- Similar to elastic and quasi-elastic
- Give a global view and a probe of the components

A perfect tool to study the EMC effect

- Offer localization with the *t* dependence
- Coherent DVCS gives access to nonnucleonic degrees of freedom
- Incoherent DVCS gives access to the modifications of the nucleon

CLAS Coherent DVCS

Coherent DVCS on helium

- Measured at CLAS

- Use recoil detector to ensure exclusivity
- Shows very strong beam spin asymmetry

Interpretation

 Very strong signal proves that we have the nuclei as a whole

Easy direct GPD extraction

- Helium has a single GPD

Extraction of the CFF

Helium allows for a simple extraction

- Spin-0 \rightarrow 1 GPD/CFF

Different contributions from *Im* and *Re* in phi

- These are calculable within perturbative QCD
- Allows to separate their contributions

Works very well

- We are mostly sensitive at the imaginary part
- More statistics will help with binning and the real part of H

CLAS Incoherent DVCS

Measurement of CLAS again

- Proton bound in helium target

Gives a generalized EMC

- Strongly suppressed in particular in the anti-shadowing region
- Strange behavior compared to the models

A New kind of EMC effect?

- It could be a nuclear effect
- Or it could be due to final state interactions
 - Can be very complicated in DVCS

Theoretical work still ongoing on these questions

26

Gluon GPDs

Can we measure the gluon GPDs?

- Possible through the exclusive production of vector mesons
- These are directly produced from the photon

If the vector meson is heavy enough

- Strange, or even better charm, composed
- Quark exchange is then highly suppressed
- Lead to a handbag diagram with gluons

This works can work for protons and nuclei

- Of special interest in nuclei as we know very little about gluons
- Are gluons subject to some nuclear modifications?

Nuclear TMD

Theory only, no experimental data

- But an important prospect
- Similarly to GPDs can offer an insight in nucleon modifications in medium
- Offers a view into the transport coefficient of the nuclear matter
 - A controversial question with variations of an order of magnitude between theoretical extractions from data

Asymmetries generated at the partonic level

- Independent of final state effects

$$\varDelta_{2F} = \int d\xi_N^- \hat{q}_F(\xi_N)$$

$$\hat{q}_F(\xi_N) = \frac{2\pi^2 \alpha_s}{N_c} \rho_N^A(\xi_N) [x f_g^N(x)]_{x \to 0}$$

Tagged Reactions

Detect the A-1 recoil

 Gives the initial nucleon kinematic

- Indicates the direction of the nuclear fragments

Allows to control the struck nucleon virtuality

$$v(|\mathbf{p}|, E) = \left(M_A - \sqrt{(M_A - m_N + E)^2 + \mathbf{p}^2}\right)^2 - \mathbf{p}^2 - m_N^2$$

Allows to control the amount of final state interactions

- Backward and lower momenta are best for reduced FSI

Tagging to measure the neutron

First measurement performed at Jefferson Lab

- Bonus experiment from CLAS
- Use deuterium target to access the neutron structure

We can observe a nice isolation of neutrons

 Neutron quasi-elastic and resonances are much sharper

So the tagging works! What can we do with it?

- Study the neutron structure
- Study nucleon structure as a function of its virtuality

The EMC effect through tagging

cross Section Slope

Projections for JLab

- No data yet

Tagging can help differentiate models

 Q² and x rescaling give drastically different predictions

Some models have more trouble

- It is difficult to make a mean field prediction here
- If one wants to probe short range correlated nucleon pairs → Detect A-2 fragments

Tagging the Centrality

Can we define something similar to centrality in eA scattering ?

- Research in progress to look at nucleon emissions
- Some old data indicate interesting behaviors

Research done with the EIC in mind

- A perfect place to let T. Ullrich take over

Summary

Lepton nucleus scattering

- Helps to learn much about classic nuclear structure
- Opens a new avenue to look at the partons in nuclei

We understand very little about partons in nuclei at this point

- Nuclear structure in terms of quarks and gluons is a very active research domain
- Understanding the EMC effect is the principal goal
- The EIC will bring the nuclear targets to the nucleon level

Beyond the scope of this lecture

 Lepton nucleus interactions can be used to explore hadronization

A. Accardi et al. Riv.Nuovo Cim. 32 (2010) 439-553

- Important for neutrino interactions as well

U. Mosel, Ann.Rev.Nucl.Part.Sci. 66 (2016) 171-195