Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions

Probing the structure of the atomic nucleus

Raphaël Dupré

Disclaimer

This will be only a selection of topics

- Like any review of a field
- I encourage you to go read some of the ref.

Speaking of references

- I will only give references to (some) reviews, which
 I highly recommend to read
- Original papers are often outdated or overly technical and not very helpful

Please ask questions or clarifications

- Let me know if you want more details on a topic

Table of Content

Lepton scattering on the nucleon

- Overview of the structure functions
- Form factors (FFs)
 - The proton radius puzzle
- Parton distribution functions (PDFs)
- Generalized parton distributions (GPDs)
- Transverse momentum dependent PDFs

Lepton scattering on the nucleus

- Treating the nucleus in hadronic physics
- Nuclear FFs
- Nucleon dynamic
 - Short range correlated nucleon pairs
- Nuclear PDFs
 - The EMC effect
- The nucleus in terms of quarks and gluons
- Summary and perspectives

Presentation JLab

Jefferson Laboratory

- Provides a 6 GeV electron beam (now up to 12 GeV)
- High quality beam
 - Beam size ~150µm
- 100% duty factor
- Intensity up to 100 µA

Four experimental Halls

- Hall A & C with arm spectrometers
- Hall B with a large acceptance spectrometer
- Hall D with a photon beam

Part 1: Lepton-Nucleon

H1 and ZEUS

Structure Functions

They parametrize the unknown

- In QCD we have very little information on them
- Their knowledge is mostly based on experiment
- Calculations and models lead to sum rules and behavior at the limits

They are carefully defined

- To understand the structure of the target hadron
- They are universal, i.e. not process dependent
- See M. Diehl QCD lecture for details

M. Diehl, Eur. Phys. J. A (2016) 52: 149

All fundamentally parton correlation functions

From experiment to structure functions

What process for what structure function?

R. Brock et al. Rev.Mod.Phys. 67 (1995) 157-248

Simplest structure goes with simpler processes

- Form factors are obtained from elastic scattering
- Parton distribution functions from deeply inelastic scattering (DIS)

More complex structure is unraveled through complex processes

- Exclusive processes like DVCS give generalized parton distributions
- Semi-inclusive DIS are linked to TMDs

Evolution

Disclaimer

- In this lecture, Q² will be mostly ignored
 - Except for FF
- However, evolution applies to most structure functions
 - PDFs, GPDs, TMDs...

What is evolution?

- It is the effect of changing the virtuality of the probe
- Given by DGLAP formulas in PDFs for this lecture
- Their are other regimes
 - See lecture on CGC

It works very well over many orders of magnitude

- And similarly in fragmentation functions
- A very strong case for QCD

Factorization and Universality

A not so straight forward property

- The dynamic in the target can be separated from the probe
- It gives their predictive power to the structure functions

Mathematically even less straight forward

- Proven now for all processes discussed here in nucleon-lepton
- Not so clear for some processes on nuclear targets

Key to universality

- Allows to use these functions in other processes
 - Any lepton beam
 - Hadron collisions
 - Neutrino interactions

J. Collins, Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 32 (2011) 1-624

Measuring Form Factors

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \frac{E_e}{E_{\mathrm{beam}}} \frac{1}{1+\tau} \left(G_E^2 + \frac{\tau}{\epsilon}G_M^2\right),$$

Form Factors

- Two of them for spin 1/2 nucleon
- Encode the charge and magnetic distributions
- Mean squared radius is given by their slope at $Q^2 \rightarrow 0$

Cross section measurements

- Most common and easiest method
- The Rosenbluth extraction
- Problematic for very small or large Q²

Double polarization experiments

- Necessitates a polarized target
- And measuring the polarized scattered nucleon
- Experimentally much more complex
- Gives better accuracy at high momentum

 $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} = \frac{\alpha^2 \cos^2 \frac{\upsilon}{2}}{4E_{\mathrm{beam}}^2 \sin^4 \frac{\theta}{2}}.$ $\epsilon = \frac{1}{1+2(1+\tau)\tan^2 \frac{\theta_e}{2}}.$

$$\tau = Q^2/4M^2.$$

10

$$A_{\text{perp}} = \frac{-2\sqrt{\tau(1+\tau)}\tan\frac{\theta_e}{2}\frac{G_E}{G_M}}{(\frac{G_E}{G_M})^2 + \frac{\tau}{\epsilon}}$$

$$\frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \frac{(E_{\text{beam}} + E_e)}{2M} \tan \frac{\theta_e}{2} \,.$$

Discrepancies between methods

Using the two methods, we found conflicting results

- Two different behaviors between Rosenbluth and polarization measurements
- Gets larger at high momentum transfer
- Which is correct? What is going on?

We neglected too much

- Two photon exchange becomes relevant in this situation
- Neglecting higher order diagrams can be problematic
 - Often when getting in extreme kinematics

Corrections are model dependent

 Polarization measurements are better in this regard

The Proton Charge Radius

On the opposite end of the Q² spectrum

- Important focus to measure the proton radius

Two conflicting constraints

- Measuring lower values give less lever arm
- Higher values are sensitive to other features

Highlights the importance of statistical analysis

 Fitting of form factors (and all structure functions) is very controversial and discussed in an important literature

The Proton Radius Puzzle

The proton radius is also subject to controversy

- Here most electron scattering measurement agrees

Atomic Physics measurements however...

- It is possible to access the proton radius independently through atomic physics
- Certain level splits are directly sensitive to the proton radius

Discrepency between electronic and muonic atoms

- The electronic hydrogen measurements are in line with scattering
- The muonic hydrogen measurement is an order of magnitude more precise but 5 sigma away

This puzzle remains an open question to this day

- R. Pohl et al. Ann. Rev. Nucl. Part. Sci. 63 (2013) 175-204
- C. Carlson, Prog.Part.Nucl.Phys. 82 (2015) 59-77

Interpretation of FFs

The interpretation of the FFs is not so simple

- One can make a three dimensional Fourier transform to get an image of the proton
- While natural this method raises many issues
- Mainly boost invariance

On the light front

- Based on modern GPD interpretations
- Only a two dimensional Fourier transform
- Gives a clean image of the nucleon

Be aware of the limitations

- Higher order contributions
- Nucleons might not be spherical

C. Alexandrou et al. Rev.Mod.Phys. 84 (2012) 1231

Flavor Separation of FFs

Using isospin symmetry

 We can separate the u and d quark profiles in the nucleon

Parity violating scattering

- Give access to the weak charge of the nucleon
- Leads to the strange form factor
- Present measurement indicates that it is non 0

D. Armstrong and R. McKeown Ann.Rev.Nucl.Part.Sci. 62 (2012) 337-359

Deeply Inelastic Scattering and PDFs

Extracting PDFs

- Mostly using DIS

- HERA with H1 and Zeus
- Now with more and more processes

Now most extractions are made using NNLO calculations

 We see a very good fit using only a x dependence of the PDF

A. Accardi et al. Eur.Phys.J. C76 (2016) no.8, 471

The Main Fit Collaborations

There are many fitting collaborations

They use different orders

- When using them one needs to be careful with consistency
- They include different processes
 - Especially important for flavor decomposition
- They apply different cuts for DIS (Q² & W)
- They use different data sets
- They use different parametrizations

\rightarrow Therefore they give rather different results

PDF sets	$\Delta \chi^2$ criterion	data sets used in analysis	
ABM12 [2]	1	incl. DIS, DIS charm, DY	
CJ15 [1] ^a	1	incl. DIS, DY (incl. $p\bar{p} \rightarrow W^{\pm}X$), $p\bar{p}$ jets, γ +jet	
CT14 [3] ^b	100	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets	
HERAPDF2.0 [4]	1	incl. DIS, DIS charm, DIS jets [only HERA data]	
JR14 [5]	1	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, DIS jets	
MMHT14 [6]	2.3 42.3	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$	
	(dynamical)		
NNPDF3.0 [7] ^c	n.a.	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$, W + charm	

Valence PDFs

Valence quarks

- Defined as u-bar(u)
- Rather well known from x of 5.10⁻³ to 0.4

High x region remains problematic

 High x and high W is difficult to obtain

Sea & Gluon PDFs

Sea Quarks

- Very well known down to small x
- Dominated by perturbative contributions

Gluons are least known

 They are mostly constrained by hadron-hadron collisions

Heavy Quarks in PDFs

Separating perturbative from intrinsic

- Try to resolve the part of sea quark purely generated through evolution
- To isolate the part present in the nucleon before the high energy interaction

This remains undecided for charm

- None the less charm perturbative contribution is particularly useful to constrain gluon PDFs

Polarized PDFs

Polarization gives access to new structure

- At the root of the proton spin crisis
- We find surprisingly small contribution from the quarks to the proton spin
- Yet they follow their sum rules

Important input from other experimental sources

Beta decay of bosons

S. Bass, Rev.Mod.Phys. 77 (2005) 1257-1302 C. Aidala et al. Rev.Mod.Phys. 85 (2013) 655-691

$$F_1(x) = \frac{1}{2x} F_2(x) = \frac{1}{2} \sum_q e_q^2 \{q + \bar{q}\}(x)$$
$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x).$$

Polarized PDFs

Only a few extractions of the polarized PDFs

- u and d have opposite contributions
- Indications that the s contribution is negative

Polarization of gluons remains elusive

- Focus of important experimental programs
- Use polarized p-p collisions

Other sources of spin

 Orbital angular momentum is the main motivation to measure GPDs

22

Open Questions

d/u

Many problems remain open: What is the radius of the proton?

 Muon scattering measurements are ongoing

Understanding high x behaviors

- Drell-Yan measurements are used to look for flavor asymmetries in the sea
- Measurements are trying to better understand the neutron

Proton spin crisis

- Better understanding of the spin contributions
- Higher precision determination of sum rules

GPD Theory Basics

Generalizing the parton distributions

- Three dimensional (x, ξ and t) structure functions
- Accessible through exclusive processes
 - DVCS, DVMP, TCS, DDVCS...

Deeply virtual Compton scattering

- The exclusive electro-production of a photon
- The simplest access to GPDs

Ji Sum Rule

 Links directly GPDs to the orbital angular momentum of quarks

$$\frac{1}{2} \int_{-1}^{+1} dx \, x \, \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right]$$

 $J_q =$

GPD Phenomenology Summary

DVCS is not the only process to produce photons exclusively

- Photons can be emitted by the lepton (Bethe-Heitler)
- Generates asymmetries through its interference with DVCS

DVCS does not give access to all three variables

- We measure Compton form factors (CFFs)

Gives many interesting observables

- Absolute cross sections
- Spin asymmetries (beam and target)
- Charge asymmetries

M. Guidal et al. Rept.Prog.Phys. 76 (2013) 066202

Actually Measuring GPDs

Theory triggered lots of DVCS measurements

- First by HERMES and CLAS
- Then with new dedicated equipment

Allows to extract the complex CFFs

- A complete set of measurement is possible

• Need positron beam and transversely polarized target

d⁴♂ (nb/GeV⁴)

∆(d⁴ σ) (nb/GeV⁴)

- Only achieved by HERMES

0.4

The Fits and the Caveats

Fitting procedures

- Fits get more complex with more dimensions
- Very small data set available at this point

How to make an underconstrained fit?

- Insert some model dependence
- With boundaries or model assumptions
- Here error bars reflect a factor 5 of the model

Or take more data...

Tomography

CFFs are directly linked to the tomography of the proton

- The mean square charge radius of the proton for slices of x
- Error bars reflect a factor 5 of the model for unconstrained CFFs

We observe the nucleon size shrinking with **x**

- Expected behavior
- In the future, we want to access the shape of the GPD

The Coming Challenges

Multiply observables

New observables help the most to reduce the model errors

Use global fits

- Introduce more model dependence
- Allows to implement all theoretical constraints

Understand better GPDs

- There is more than tomography

Transverse Momentum Dependent PDFs

Most proeminent in Hadron-hadron

- Experimentally observed more than 40 years ago
- It took a long time for theory to catch up

The basic theory

- TMD PDFs are convoluted with fragmentation functions (beyond the scope of this lecture)
- Works well for lepton scattering

Q N	U	L	Т
U	$\mathbf{f_1}$		h_1^\perp
L		$\mathbf{g_1}$	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h ₁ h_{1T}^{\perp}

Extracting Signal of the TMDs

TMD extraction is simple, in principle

- Each function has a different modulation
- Experimentally, it is a bit more complicated

Experimental needs

- Polarized targets
 - Preferably long. and tr.
- High acceptance
- High resolution

$$\frac{d\sigma}{dx_B \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{x_B y \, Q^2} \frac{y^2}{2(1-\varepsilon)}$$

$$\times \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\sin 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{UL}^{\sin 2\phi_h} \right]$$

$$+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right]$$

$$+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right]$$

$$+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right]$$

$$+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$$

$$+ \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin \phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)}$$

$$+ |S_{\perp}|\lambda_{e} \left[\sqrt{1 - \varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_{S} F_{LT}^{\cos \phi_{S}} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \right\}.$$

The Sivers Distribution

Correlate target spin and hadron direction

- Indicates the presence of orbital angular momentum (OAM)
- Positive and negative hadrons as well as proton and deuterium targets
- u and d quarks seem to contribute in opposite directions

No quantitative link with OAM

- Possible only using model dependent assumptions

TMD Fits

Fits of TMDs are just starting

- Includes lepton-proton and proton-proton
- Allows to separate u and d

Shows the "hints" from data are to be taken carefully

Necessitate di-hadron fragmentation functions

- Not well studied in the past
- Renewed interest due to TMDs phenomenology

What is coming?

Jefferson Lab and COMPASS@CERN

- They are running many more experiments
- Precision will progress a lot, as well as covered phase space

Farther in the future is the EIC

- Billion dollars large scale accelerator
- Will run at energies larger than COMPASS with luminosity comparable to Jefferson Lab
- All spin configurations will be available

See lecture at the end of the week from T. Ullrich

One Function to Unify Them All

Eventually, we would like to unify all of this

- Wigner distributions are the tool of choice
- They are five dimensional
- Include uncertainty principle

How to measure them?

- Ideas are only starting to be proposed
- 16 complex GTMDs for the proton
- Needless to say, there is still some serious work in front of us

Summary

Nucleon structure

- Characterized by a zoo of functions
- Understood using electron scattering and many other processes

Some outstanding issues remain with older structure functions (FFs and PDFs)

 Proton radius, large x structure, origin of the proton spin...

Many new opportunities present themselves with the 3D structure of the nucleon unravelling

- Starting to build a 3D image of the nucleon
- Understanding the dynamic of the quarks
- Correlations of quarks and more...