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The Big Bang

Introduction

● Quantum Chromo-Dynamics

● Quark-Gluon Plasma

● Heavy ion collisions

● Quantum field theory at T=0

Perturbation theory at finite T

Matsubara formalism

CERN

François Gelis – 2007 Lecture I / III – 2nd Rio-Saclay meeting, CBPF, Rio de Janeiro, September 2007 - p. 13/45

QGP in the early universe

big bang

end of inflation

EW transition

confinement

nucleosynthesis

formation of atoms

time

Quark Gluon Plasma

10-32 sec

10-10 sec

10-5 sec

10+2 sec

10+12 sec

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 2 / 116



The Little Bang

A space–time picture of a heavy ion collision (HIC)

z 

t

incoming nuclei CGCs

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

‘Initial singularity’ : the collision between the two incoming nuclei

The QGP is re-created in the intermediate stages
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Phase–diagram for QCD

... as explored by the expansion of the Early Universe ...

Quark Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Density

Expansion of
the early Universe

Heavy ion collisions

... and in the ultrarelativistic heavy ion collisions.
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Heavy Ion Collisions @ RHIC & the LHC
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Au+Au collisions at RHIC

Au+Au collision at STAR: longitudinal projection

∼ 7000 produced particles streaming into the detector

Collision energy (COM frame) :
√
s = 200 GeV/nucleon
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Au+Au collisions at RHIC

Au+Au collision at STAR: along the beam axis

∼ 7000 produced particles streaming into the detector

Collision energy (COM frame) :
√
s = 200 GeV/nucleon
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Au+Au collisions at RHIC

Au+Au collision at STAR: transverse projection
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Pb+Pb collisions at the LHC: ALICE

Pb+Pb collision at ALICE:
√
s = 2760 GeV/nucleon

& 20,000 hadrons in the detectors

Is that much ?
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p+p collisions at the LHC: CMS

p+p collision at 7 TeV: candidate event for H → γγ

Less than 50 tracks/hadrons in the final state
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Pb+Pb collisions at the LHC: ALICE

Where are all these (> 10000) hadrons coming from ?

How to trace back their history ?

How to understand that from first principles (QCD) ?
Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 10 / 116



Pb+Pb collisions at the LHC: ALICE

Partons which have been liberated by the collision.

How to trace back their history ?

How to understand that from first principles (QCD) ?
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Pb+Pb collisions at the LHC: ALICE

Partons which have been liberated by the collision.

They leave imprints on the hadron distribution in the final state.

How to understand that from first principles (QCD) ?
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Pb+Pb collisions at the LHC: ALICE

Partons which have been liberated by the collision.

They leave imprints on the hadron distribution in the final state.

Build effective theories for the relevant degrees of freedom.
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QCD matter: from hadrons ...

At low energies, QCD matter exists only in the form of hadrons
(mesons, baryons, nuclei) ... as a consequence of confinement
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QCD matter: ... to partons

At high energies, the relevant d.o.f. are partonic (quarks & gluons)

B interactions occur over distances much shorter than the confinement scale

The HIC’s give us access to dense forms of partonic matter
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New forms of QCD matter produced in HIC

Prior to the collision: 2 Lorentz–contracted nuclei (‘pancakes’)

‘Color Glass Condensate’ : highly coherent form of gluonic matter

Right after the collision: non–equilibrium partonic matter

‘Glasma’ : color fields break into partons

At later stages (∆t & 1 fm/c) : incomplete equilibration

‘Quark–Gluon Plasma’ (QGP)

Final stage (∆t & 10 fm/c) : hadrons

‘final event’, or ‘particle production’
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New forms of QCD matter produced in HIC

Prior to the collision: 2 Lorentz–contracted nuclei (‘pancakes’)

‘Color Glass Condensate’ : highly coherent form of gluonic matter

Right after the collision: non–equilibrium partonic matter

‘Glasma’ : color fields break into partons

At later stages (∆t & 1 fm/c) : incomplete equilibration

‘Quark–Gluon Plasma’ (QGP)

My focus here: the partonic phases at early and intermediate stages
Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 13 / 116



Outline

The wavefunctions of the incoming hadrons:

Color Glass Condensate

Particle production at early stages :

proton-proton (pp), proton-nucleus (pA), nucleus-nucleus (AA)

AA collisions : Glasma & thermalization

Flow and hydrodynamics

Thermodynamics of the Quark Gluon Plasma

Hard probes of the QGP: jet quenching

B Main emphasis: What do heavy ion collisions teach us about QCD
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Instead of references ...

For a general and rather elementary introduction and for more references
(albeit a bit outdated), you may have a look at this review paper:
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High-energy QCD and the CGC

p

x
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More specific references ...

... on High-energy QCD and the Color Glass Condensate

Whenever possible, I will refer to the arXiv number

A book: Quantum chromodynamics at high energy, by Yuri V. Kovchegov
and Eugene Levin, 2012, 349 pp. (Cambridge Univ Press)

A few review papers or lecture notes (not exhaustive):

The Colour Glass Condensate: An Introduction, by E. Iancu, A.
Leonidov, and L. McLerran, arXiv:hep-ph/0202270
The Color Glass Condensate and High Energy Scattering in QCD,
by E. Iancu and R. Venugopalan, arXiv:hep-ph/0303204
High energy scattering in Quantum Chromodynamics, by F. Gelis, T.
Lappi, and R. Venugopalan, arXiv:0708.0047 [hep-ph]
The Color Glass Condensate, by F. Gelis, E. Iancu, J. Jalilian-Marian,
and R. Venugopalan, arXiv:1002.0333 [hep-ph]
Gluon saturation and initial conditions for relativistic heavy ion
collisions, J. L. Albacete and C. Marquet, arXiv:1401.4866 [hep-ph].
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A hadron-hadron collision

x

z

y

P2P1

pp or nucleon–nucleon (NN) pair from a pA or AA collision

z : longitudinal (or ‘beam’) axis; x⊥ = (x, y) : transverse plane

Center-of-mass frame : Pµ1 = (E, 0, 0, E), Pµ2 = (E, 0, 0,−E)

high energy: particle masses are negligible: E =
√
P 2
z +M2 ' |Pz|

huge boost factor γ = E/M ∼ 1000 at the LHC: Lorentz contraction

Center-of-mass energy squared : s = (P1 + P2)2 = 2P1 · P2 = 4E2
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A partonic subcollision

High energy interactions truly proceed at partonic level

quarks and gluons from the wavefunctions of the incoming hadrons

To lowest order in perturbative QCD (i.e. O(α2
s)): a 2→ 2 subcollision

e.g. q(p1) + q(p2) → q(k1) + q(k2)

Initial partons are assumed to be collinear with the incoming hadrons

pµ1 = (x1E, 0⊥, x1E) , pµ2 = (x2E, 0⊥, −x2E)

Longitudinal momentum fractions: x = |pz|/E
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A partonic subcollision

High energy interactions truly proceed at partonic level

quarks and gluons from the wavefunctions of the incoming hadrons

To lowest order in perturbative QCD (i.e. O(α2
s)): a 2→ 2 subcollision

Transverse momenta p⊥ = (px, py) are assumed to be negligible:

“the only source for intrinsic p⊥ is confinement”

p⊥ ∼ ΛQCD ∼ 250 GeV � |pz| = xE

“collinear factorization”
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2→ 2 kinematics

Recall:

we are working in the COM frame of the nucleon-nucleon pair
the initial partons have no transverse momenta

Transverse momentum conservation: k1⊥ + k2⊥ = 0 ⇒ “back-to-back”

Longitudinal momentum conservation: x1E − x2E = k1z + k2z

Energy conservation: x1E + x2E = |k1|+ |k2|
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Rapidities

The longitudinal kinematics is conveniently dealt with by using rapidities

Consider an on-shell particle: pµ = (E,p⊥, pz) with E =
√
m2 + p2

⊥ + p2
z

its rapidity: y ≡ 1

2
ln
E + pz
E − pz

Positive for a ‘right-mover’ (pz > 0) & negative for a ‘left-mover’ (pz < 0)

E = m⊥ cosh y, pz = m⊥ sinh y , with m⊥ ≡
√
m2 + p2

⊥

y transforms via a shift under a Lorentz boost along the collision axis

E → γ(E + βpz), pz → γ(pz + βE) =⇒ y → y +
1

2
ln

1 + β

1− β

β: boost velocity; γ ≡ 1/
√

1− β2: Lorentz boost factor

rapidity differences ∆yij = yi − yj are boost invariant
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Rapidities

The longitudinal kinematics is conveniently dealt with by using rapidities

Consider an on-shell particle: pµ = (E,p⊥, pz) with E =
√
m2 + p2

⊥ + p2
z

its rapidity: y ≡ 1

2
ln
E + pz
E − pz

Positive for a ‘right-mover’ (pz > 0) & negative for a ‘left-mover’ (pz < 0)

E = m⊥ cosh y, pz = m⊥ sinh y , with m⊥ ≡
√
m2 + p2

⊥

In the experiments, it is easier to measure angles =⇒ “pseudo-rapidities”

η ≡ 1

2
ln
p+ pz
p− pz

= − ln tan
θ

2
, cos θ =

pz
p

p ≡ |~p| =
√
p2
⊥ + p2

z =⇒ y = η for massless particles

In these lectures, all particles are massless !
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2→ 2 kinematics revisited

Energy conservation: x1E + x2E = |k1|+ |k2| = k1⊥ cosh η1 + k2⊥ cosh η2

Longitudinal momentum: x1E−x2E = k1⊥ sinh η1 + k2⊥ sinh η2

x1 =
k1⊥√
s

eη1 +
k2⊥√
s

eη2 , x2 =
k1⊥√
s

e−η1 +
k2⊥√
s

e−η2

Particle production probes the wave functions of the incoming hadrons (their
parton distributions in x)

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 22 / 116



Particle production

x1 =
k1⊥√
s

eη1 +
k2⊥√
s

eη2 , x2 =
k1⊥√
s

e−η1 +
k2⊥√
s

e−η2

High-energy regime: k⊥/
√
s � 1 ←→ small-x partons: x � 1

“Central rapidities”: η ∼ 0 ⇐⇒ θ ∼ π/2 ⇐⇒ |kz| � k⊥ ' k

“Forward/backward rapidities”: θ ∼ 0 or π ⇐⇒ |kz| ≈ k � k⊥

Forward production : η1, η2 positive and large =⇒ x2 � x1 (asymmetry)
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Collinear factorization (see Markus’ lectures for more !)

dσ

d2k1⊥d2k2⊥dη1dη2
=
∑

ij

x1fi(x1, µ
2)x2fj(x2, µ

2) δ(2)(k1⊥ + k2⊥)
dσ̂ij
dk2
⊥

µ2 : factorization scale (of order k2
⊥ � Λ2

QCD)

Leading-order pQCD: dσ̂ij
dk2
⊥
∼ α2

s

k4
⊥

=⇒ favors “soft” (low k⊥) particles

This eventually fails when decreasing x at fixed and moderate values of k2
⊥
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Multiplicity in pp, pA, AA : dN/dη
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T
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99% of the total multiplicity lies below p⊥ = 2 GeV

x ∼ 10−2 at RHIC (
√
s = 200 GeV & η = 0)

x ∼ 4× 10−4 at the LHC (
√
s = 5 TeV & η = 0)

x2 ∼ 10−5 at the LHC & forward rapidity (
√
s = 5 TeV & η = 4)
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Multiplicity in pp, pA, AA : dN/dη
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The bulk of particle production is controlled by partons at small x� 1

Where do all these partons come ?!
“A nucleon is built with 3 valence quarks, each one carrying x ∼ 1/3”

Need to better understand the parton structure of a hadron
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Deep inelastic scattering at HERA (see Markus for more !)

! "

k
k’

electron

P
proton

p
p+q

q=k-k’

X

Q2 ≡ −qµqµ > 0 , x
Bj
≡ Q2

2P · q

' Q2

s

-310

-210

-110

1

10

-410 -310 -210 -110 1
-310

-210

-110

1

10

 HERAPDF1.0

 exp. uncert.

 model uncert.

 parametrization uncert.
 

x
xf 2 = 10 GeV2Q

vxu

vxd

xS 

xg 

                H1 and ZEUS

-310

-210

-110

1

10

Parton distribution functions: xq(x,Q2), xG(x,Q2)

B number of partons (quark, gluons) with transverse size ∆x⊥ ∼ 1/Q

and longitudinal momentum fraction x ∼ xBj
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Deep inelastic scattering at HERA (see Markus for more !)

! "

k
k’

electron

P
proton

p
p+q

q=k-k’

X

Q2 ≡ −qµqµ > 0 , x
Bj
≡ Q2

2P · q '
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Parton picture: a nearly on-shell, massless quark collinear with the proton
absorbs the virtual photon and emerges as a free, on-shell, quark

0 = (p+ q)2 = p2 + q2 + 2p · q = −Q2 + 2xP · q =⇒ x =
Q2

2P · q = xBj
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Deep inelastic scattering at HERA (see Markus for more !)
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Q2 ≡ −qµqµ > 0 , x
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s = COM energy squared of the proton+virtual-photon collision

s = (P + q)2 = M2 −Q2 + 2P · q ' 2P · q when s� Q2 > M2

DIS at high energy is probing parton distributions at small x� 1
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Parton evolution in QCD

! "

k
k’

electron

P
proton

p
p+q

q=k-k’

X

q

P

The virtual photon γ∗ couples to the (anti)quarks inside the proton

Gluons are measured indirectly, via their effect on quark distribution

Quantum evolution : change in the partonic content when changing
the resolution scales x and Q2, due to additional radiation
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The small–x partons are mostly gluons

q

P
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For x ≤ 0.01 the hadron wavefunction contains mostly gluons !

The gluon distribution is rapidly amplified by the quantum evolution with
decreasing x (or increasing energy s at fixed Q2)
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Bremsstrahlung
A quark — say, a valence quark from a proton — emits a gluon with
longitudinal momentum fraction x ≤ 1, and transverse momentum k⊥

dP ' αs
2π

dk2
⊥

k2
⊥
Pg←q(x)dx

Pg←q(x) ≡ CF
1 + (1−x)2

x

Logarithmic enhancement for large-k⊥ emissions (p2 ∼ Λ2 < k2
⊥ < Q2):

∫ Q2

Λ2

dk2
⊥

k2
⊥

= ln
Q2

Λ2

... and also for soft/low-energy (x→ 0) gluons: Pg←q(x) ' 2CF /x

∫ 1

x0

dx

x
= ln

1

x0
≡ Y0
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Bremsstrahlung
A quark — say, a valence quark from a proton — emits a gluon with
longitudinal momentum fraction x ≤ 1, and transverse momentum k⊥

dP ' αs
2π

dk2
⊥

k2
⊥
Pg←q(x)dx

Pg←q(x) ≡ CF
1 + (1−x)2

x

Logarithmic enhancement for large-k⊥ emissions (p2 ∼ Λ2 < k2
⊥ < Q2):

∫ Q2

Λ2

dk2
⊥

k2
⊥

= ln
Q2

Λ2

Emissions of soft quarks are not enhanced: ξ ≡ 1− x� 1

Pq←q(ξ) = Pg←q(x = 1− ξ) = CF
1 + ξ2

1− ξ → CF
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Gluon splitting
Gluon splitting into two gluons:

dP ' αs
2π

dk2
⊥

k2
⊥
Pg←g(x)dx

Pg←g(x) ≡ 2Nc
[1− x(1−x)]2

x(1− x)

Soft gluon emission: x� 1 =⇒ “eikonal approximation”

dP ' αsNc
π

dk2
⊥

k2
⊥

dx

x

The transverse position of the parent parton is not changing during the
lifetime of the fluctuation
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The fluctuation lifetime

An on-shell parton cannot decay into a pair of on-shell partons

B the gluon is eventually reabsorbed: “virtual fluctuation”

The maximal transverse separation ∼ transverse wavelength

∆x⊥ ∼
k⊥
kz

∆t . λ⊥ ∼
2

k⊥

∆t ' 2kz
k2
⊥

It is the transverse velocity v⊥ = k⊥/kz of the soft gluon which matters

The transverse velocity V⊥ = k⊥/pz = xv⊥ acquired by the energetic parent

parton is negligible: ∆X⊥ ∼ V⊥∆t ' xλ⊥ � λ⊥

N.B. The same estimate for ∆t follows from the uncertainty principle

1

∆t
= ∆E ≡

√
(xpz)2 + k2

⊥ +
√

((1− x)pz)2 + k2
⊥ − pz '

k2
⊥

2x(1− x)pz
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The fluctuation lifetime

An on-shell parton cannot decay into a pair of on-shell partons

B the gluon is eventually reabsorbed: “virtual fluctuation”

The maximal transverse separation ∼ transverse wavelength

∆t ' 2xpz
k2
⊥

∆tcoll '
1

q0

x ' Q2

s
' Q2

2pzq0

In DIS, the virtual photon “sees” only those fluctuations which live long
enough: longer than the collision time

∆t & ∆tcoll =⇒ k2
⊥ . Q2
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The gluon distribution of a single quark

To leading order in αs: single gluon emission by the quark =⇒

dNgluon

dxd2k⊥
=

dPBrem

dxd2k⊥

B “unintegrated gluon distribution”

The gluon distribution xG(x,Q2) : # of gluons with a given energy fraction
x and any transverse momentum k⊥ . Q

xG(0)(x,Q2)=

∫ Q

d2k x
dNgluon

dxd2k⊥
=
αsCF
π

∫ Q2

Λ2

dk2
⊥

k2
⊥

=
αsCF
π

ln
Q2

Λ2

B logarithmic sensitivity to the hard resolution scale Q2

B logarithmic sensitivity to the confinement scale Λ2

B no dependence upon energy (x)

B the energy dependence enters only via the quantum evolution
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Two gluons

The intermediate gluon (x1, k1⊥) is not measured, but it acts as a source
for the measured one (x, k⊥)

x� 1, Λ2 � k2
⊥ � Q2

x� x1 � 1

Λ2 � k2
1⊥ � k2

⊥

N.B. The lifetime of the intermediate gluon is much larger:

∆t1 '
2x1pz
k2

1⊥
� ∆t ' 2xpz

k2
⊥

The 2-gluon contribution to the gluon distribution measured at x and Q2

xG(1)(x,Q2)=
αsCF
π

∫ Q2

Λ2

dk2
⊥

k2
⊥

αsNc
π

∫ 1

x

dx1

x1

∫ k2
⊥

Λ2

dk2
1⊥

k2
1⊥

= xG(0)(x,Q2)
1

2

αsNc
π

ln
Q2

Λ2
ln

1

x
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The double logarithmic approximation

When ᾱY ρ & 1 =⇒ need for all-order resummation

ᾱ ≡ αsNc
π

, Y ≡ ln
1

x
, ρ ≡ ln

Q2

Λ2

Strong ordering in both x (decreasing):

x� xn � xn−1 · · · � x1 � 1

... and k⊥ (increasing):

Q2 � k2
⊥ � k2

n⊥ · · · � k2
1⊥ � Λ2

ᾱn
∫ 1

x

dxn
xn

∫ 1

xn

dxn−1

xn−1
· · ·
∫ 1

x2

dxn
xn

=
1

n!

(
ᾱY
)n
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The double logarithmic approximation

When ᾱY ρ & 1 =⇒ need for all-order resummation

ᾱ ≡ αsNc
π

, Y ≡ ln
1

x
, ρ ≡ ln

Q2

Λ2

Strong ordering in both x (decreasing):

x� xn � xn−1 · · · � x1 � 1

... and k⊥ (increasing):

Q2 � k2
⊥ � k2

n⊥ · · · � k2
1⊥ � Λ2

After summing over cascades with any number n ≥ 0 of intermediate gluons:

xG(x,Q2) = xG(0)(x,Q2)
∑

n≥0

(ᾱY ρ)n

(n!)2
= xG(0)(x,Q2) I0(2

√
ᾱY ρ)

I0(x) : modified Bessel function of rank zero

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 35 / 116



The double logarithmic approximation

When ᾱY ρ & 1 =⇒ need for all-order resummation

ᾱ ≡ αsNc
π

, Y ≡ ln
1

x
, ρ ≡ ln

Q2

Λ2

Strong ordering in both x (decreasing):

x� xn � xn−1 · · · � x1 � 1

... and k⊥ (increasing):

Q2 � k2
⊥ � k2

n⊥ · · · � k2
1⊥ � Λ2

Asymptotic behavior at small-x and large-Q2 : ᾱY ρ� 1

xG(x,Q2) ∝ e2
√
ᾱY ρ ∝ exp

{
2

√
ᾱ ln

1

x
ln
Q2

Λ2

}

Rapid increase with both 1/x and Q2: faster than any power
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Gluon evolution at small x
A gluon with ~k = (k⊥, kz = xP ) has a longitudinal extent ∆z ∼ 1/xP and
occupies a transverse area ∆x2

⊥ ∼ 1/k2
⊥

small-x gluons can easily overlap in the longitudinal direction
to actually overlap, their transverse momenta need to be small enough

An energetic proton with P = γM and γ � 1 (“infinite momentum frame”)

DLA (generally, DGLAP) evolution maintains a dilute system of partons

rapid decrease in their transverse sizes =⇒ no possible overlap
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Gluon evolution at small x

A gluon with ~k = (k⊥, kz = xP ) has a longitudinal extent ∆z ∼ 1/xP and
occupies a transverse area ∆x2

⊥ ∼ 1/k2
⊥

small-x gluons can easily overlap in the longitudinal direction
to actually overlap, their transverse momenta need to be small enough

BFKL evolution (Balitsky, Fadin, Kuraev, Lipatov, 1974-78)

decrease x at roughly fixed k⊥:
∑
n [ᾱ ln(1/x)]

n
=⇒ increasing density

leading logarithmic approximation (LLA) at small x
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Gluon occupancy

Overlapping gluons can interact with each other

What matter is not the density (# of gluons per unit transverse area)

... but the gluon occupation number (or ‘packing factor’)

takes into account their ⊥ size

n(x,k⊥) ≡ x dNgluon

dxd2k⊥d2x⊥

a simple estimate

n(x,Q2) ' 1

Q2
× xG(x,Q2)

πR2

dilute systems have n� 1

When n & 1, gluons overlap, but their interactions are still suppressed by αs
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Gluon saturation

HERA data suggest:

n(x,Q2) ' xG(x,Q2)

R2Q2
∼ 1

xλ

with λ = 0.2÷ 0.3.

Consistent with BFKL evolution: Y ≡ ln(1/x)

∂n

∂Y
= ωαsn =⇒ n ∝ eωαsY

Linear equation: after being emitted, gluons do not interact with each other,
but merely act as sources for new gluons, with smaller values of x

A reasonable assumption if the gluon occupancy is not that high: n . 1

When n ∼ 1/ᾱ, gluons self interactions become of O(1): what happens?

A related question: can the gluon distribution xG(x,Q2) keep growing when
x becomes arbitrarily small ?
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Gluon saturation

HERA data suggest:

n(x,Q2) ' xG(x,Q2)

R2Q2
∼ 1

xλ

with λ = 0.2÷ 0.3.

Non-linear evolution (GLR)

∂n

∂Y
= αsn− α2

sn
2 ∼ 0 when n ∼ 1

αs

The idea of gluon saturation (L. Gribov, Levin, Ryskin, 1982)

gluon recombination (gg → g) becomes important and equilibrates
gluon splitting (g → gg)

gluon occupation number saturates at a value n ∼ 1/ᾱ

The actual physics is more complicated than just “gluon recombination”

GLR equation: cartoon version of the non-linear evolution in QCD at small x
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The saturation momentum

The non-linear physics introduces a characteristic transverse momentum

B the transverse momentum below which gluons are at saturation

n(x,Q2) ' xG(x,Q2)

R2Q2
∼ 1

ᾱ
when Q2 . Q2

s(x)

The saturation momentum

Q2
s(x)' ᾱ

xG(x,Q2
s)

R2
∼ 1

xλs

Gluon density in transverse plane

Q2
s(x) rises with 1/x, hence with the

energy: λs ' 0.2÷ 0.3

Non-linear evolution: BK-JIMWLK
ln !

Y = ln 1/x

2
QCD

Saturation
= " Y

ln Q2

Dilute system

DGLAP

JIMWLK

sln Q  (Y)2
s
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The saturation front

A more precise definition of the gluon occupation number

n(Y,k⊥) ≡ (2π)3

2Ng

dNgluon

dY d2k⊥d2x⊥
, Ng ≡ N2

c −1

Y = 15
Y = 10
Y = 5

log(k2/k2
0)

n
(k

)

35302520151050-5-10

10

1

0.1

0.01

0.001

1e-04

1e-05

One roughly has

n(x, k⊥) '





1

ᾱ
for k⊥ . Qs(x) ,

1

ᾱ

Q2
s(x)

k2
⊥

for k⊥ � Qs(x) .

Q2
s(x) ∝ 1

xλs
=⇒ lnQ2

s(Y ) ' λsY

Occupation numbers are rapidly decreasing when increasing k⊥ above Qs

Qs(x) is also the typical transverse momentum for gluons with x� 1
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The saturation front

A more precise definition of the gluon occupation number

n(Y,k⊥) ≡ (2π)3

2Ng

dNgluon

dY d2k⊥d2x⊥
, Ng ≡ N2

c −1

Y = 15
Y = 10
Y = 5

log(k2/k2
0)

n
(k

)

35302520151050-5-10

10

1

0.1

0.01

0.001

1e-04

1e-05

One roughly has

n(x, k⊥) '





1

ᾱ
for k⊥ . Qs(x) ,

1

ᾱ

Q2
s(x)

k2
⊥

for k⊥ � Qs(x) .

Q2
s(x) ∝ 1

xλs
=⇒ lnQ2

s(Y ) ' λsY

A front which progresses towards larger k⊥ when increasing Y = ln(1/x)

The saturation exponent λs : the speed of the front in logarithmic units
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The saturation front

A more precise definition of the gluon occupation number

n(Y,k⊥) ≡ (2π)3

2Ng

dNgluon

dY d2k⊥d2x⊥
, Ng ≡ N2

c −1

Y = 15
Y = 10
Y = 5

log(k2/k2
0)

n
(k

)

35302520151050-5-10

10

1

0.1

0.01

0.001

1e-04

1e-05

One roughly has

n(x, k⊥) '





1

ᾱ
for k⊥ . Qs(x) ,

1

ᾱ

Q2
s(x)

k2
⊥

for k⊥ � Qs(x) .

Q2
s(x) ∝ 1

xλs
=⇒ lnQ2

s(Y ) ' λsY

To have large occupation numbers n ∼ 1
ᾱ � 1, one needs weak coupling

For sufficiently large Y : Q2
s(Y )� Λ2

QCD =⇒ αs
(
Qs(Y )

)
� 1 =⇒ pQCD
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Average p⊥ in pp (LHC) and pp̄ (Tevatron)

The saturated gluons are released by the collision and fragment into hadrons
in the final state

Typical transverse momentum: 〈pT 〉 ∝ Qs(x) ∼ Eλs/2 (E ≡ √s)

 [GeV/c]
T

p
0 0.5 1 1.5 2 2.5 3 3.5 4

]
-2

 [(
G

eV
/c

)
T

 d
p

η
/d

ch
 N2

) 
d

T
 pπ

1/
(2

-510

-410

-310

-210

-110

1

10
Data 0.9 TeV

Data 2.36 TeV

CMS(b)

(McLerran and Praszalowicz, 2010)
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Multiplicity : energy dependence

Particle multiplicity dN/dη: number of hadrons per unit rapidity near η = 0

Controlled by soft hadrons (p⊥ . 1 GeV), hence by saturated gluons

dN

dη
∝ xG(x,Q2

s) ∝ Q2
s(x)

B which value for x ?

x ' k⊥√
s

& k⊥ ∼ Qs

Q2
s(x) ∝ 1

xλs
∼ s

λs
2+λs

λs ' 0.2÷ 0.3
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The nuclear oomph factor

For a single proton (Nc valence quarks) and to leading order (no evolution)

n(Y,k⊥) ≡ (2π)3

2Ng

αsCFNc
π2R2k2

⊥
=⇒ Q2

0p =
2α2

sNc
R2

∼ (0.2 GeV)2

B Q0p ∼ ΛQCD (confinement) =⇒ dilute system, no gluon saturation

Large nucleus (A� 1): Au: A = 197 (RHIC) or Pb: A = 207 (LHC)

Incoherent superposition of A nucleons (McLerran–Venugopalan model, ’94)

Q2
0A =

2α2
sANc
R2
A

= A1/3Q2
0p ∼ (0.5 GeV)2

The saturation momentum of a large nucleus is semi-hard already at not so
small values of x (say, for x0 . 0.05)

CFNc
Ng

= 1/2; R2
A = A2/3R2; R ∼ 1

ΛQCD
∼ 1 fm; 1 fm × 1 GeV ' 5
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Gluon evolution towards saturation (heuristically)

The energy dependence of the gluon distribution, hence of the saturation
momentum, arises exclusively from the quantum evolution

In presence of saturation evolution equations are non-linear (BK-JIMWLK)

The Y -dependence of Q2
s(Y ) can be also computed from the linearized

(BFKL) equation, supplemented with a saturation condition

Just for simplicity, let’s use the double-log approximation (ρ ≡ ln
k2
⊥
Q2

0
)

n(Y, k2
⊥) = n(0)(k2

⊥) I0(2
√
ᾱY ρ) ' 1

ᾱ
e−ρ e2

√
ᾱY ρ

n(Y, k2
⊥ = Q2

s(Y )) =
1

ᾱ
=⇒ ρs(Y ) = 2

√
ᾱY ρs(Y ) = 4ᾱY

Develop for ρ close to (but above) ρs(Y )

n(Y, ρ) ' 1

ᾱ
e−

1
2 (ρ−ρs(Y )) e−

(ρ−ρs(Y ))2

16ᾱY
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Gluon evolution towards saturation (heuristically)

The energy dependence of the gluon distribution, hence of the saturation
momentum, arises exclusively from the quantum evolution

In presence of saturation evolution equations are non-linear (BK-JIMWLK)

The Y -dependence of Q2
s(Y ) can be also computed from the linearized

(BFKL) equation, supplemented with a saturation condition

Just for simplicity, let’s use the double-log approximation (ρ ≡ ln
k2
⊥
Q2

0
)

n(Y, k2
⊥) = n(0)(k2

⊥) I0(2
√
ᾱY ρ) ' 1

ᾱ
e−ρ e2

√
ᾱY ρ

n(Y, k2
⊥ = Q2

s(Y )) =
1

ᾱ
=⇒ ρs(Y ) = 2

√
ᾱY ρs(Y ) = 4ᾱY

“Geometric scaling” within a window ρ− ρs(Y ) which extends with Y

n(Y, ρ) ' 1

ᾱ
e−

1
2 (ρ−ρs(Y )) =

1

ᾱ

[
Q2
s(Y )

k2
⊥

] 1
2

if ρ− ρs �
√

16ᾱY
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The traveling wave

The occupation number ‘scales’ as a function of Q2
s(Y )/k2

⊥
instead of 2 independent variables ρ and Y , there is only one:
the deviation ρ− ρs(Y ) from the saturation line

Y = 15
Y = 10
Y = 5

log(k2/k2
0)

n
(k

)
35302520151050-5-10

10

1

0.1

0.01

0.001

1e-04

1e-05

n(Y, ρ) ' n(ρ− λsY ): the front propagates at speed λs, without distorsion

“Anomalous dimension” built by evolution: Q2
s/k

2
⊥ → [Q2

s/k
2
⊥]γ , γ = 1/2
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Geometric scaling at HERA: F2

DIS cross–section at HERA (Staśto, Golec-Biernat, Kwieciński, 2000)

σ(x,Q2) vs. τ ≡ Q2/Q2
s(x) ∝ Q2/x0.3 : x ≤ 0.01, Q2 ≤ 450 GeV2

10
-2

10
-1

1

10

10 2

10 -6 10 -5 10 -4 10 -3 10 -2

0.0075

0.0178

0.042

0.1

0.24

0.56

1.33

3.15

7.47 17.7 42.0 100

HERA fixed target

x

Q
2 (G

eV
2 )

10
-1

1

10

10 2

10 3

10 -3 10 -2 10 -1 1 10 10 2 10 3

E665
ZEUS+H1 high Q2 94-95
H1 low Q2 95
ZEUS BPC 95
ZEUS BPT 97

x<0.01

all Q2

!

"
to

t#
*p

  [
µ

b]
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An intermediate check list

So far, a lot of hand-waving arguments !

We brought physical motivations and qualitative arguments in favor of:

the evolution of the gluon distribution towards higher density with
increasing energy/decreasing x
the emergence of new collective phenomena like gluon saturation and
multiple scattering
possible consequences of the phenomena such as geometric scaling

To which extent is this physics grounded in pQCD ? What can we actually
compute and how ?

In what follows, we shall discuss high-energy factorization(s)

first for “dilute-dense”: DIS and pA (proton-nucleus) collisions
eventually, also for “dense-dense”: AA (nucleus-nucleus) collisions

... and the high energy evolution in the leading logarithmic approximation

Balitsky-Kovchegov, JIMWLK equations
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DIS at high energy: the dipole frame

DIS at small x: the evolution involves only gluons but γ∗ couples to a sea
quark (or antiquark) produced by the last gluon in the cascade

Boost to a frame where γ∗ is energetic (q0 ' qz � Q):

the qq̄ can now be seen as a part of the photon wavefunction

x ≡ Q2

2p · q � 1 ⇐⇒ ∆t ' 2qz
Q2

� 1

pz

N.B. the physical picture & the factorization depend upon the Lorentz frame
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Dipole factorization for DIS

σγ∗p = [probability for γ∗ → qq̄] (QED) × [σqq̄p] (QCD)

The qq̄ pair is in a color singlet state: 1√
3

(
|RR̄〉+ |BB̄〉+ |GḠ〉

)
= |dipole〉

σγ∗p(Q
2, x) =

∫
d2r

∫ 1

0

dz
∣∣Ψγ∗→qq̄(r, z;Q

2)
∣∣2 σdipole(r, x)

γ∗ wavefunction Ψγ∗→qq̄(r, z;Q2): computed in QED perturbation theory

r2 ∼ 1/Q2: dipole transverse size (dipole resolution in the transverse plane)

The dipole cross-section σdipole: encodes the QCD scattering and evolution
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Dipole factorization for DIS

σγ∗p = [probability for γ∗ → qq̄] (QED) × [σqq̄p] (QCD)

The qq̄ pair is in a color singlet state: 1√
3

(
|RR̄〉+ |BB̄〉+ |GḠ〉

)
= |dipole〉

Known for many years to leading order (LO) in αs
Nikolaev and Zakharov, 94; Al Mueller, 94;
textbook by Forshaw and Ross (“QCD and the Pomeron”)

Recently extended to next-to-leading order (impact factor & evolution)
(Balitsky and Chirilli, 2008-2013; Beuf, 2016-17)

No general argument like OPE; no reason to be valid to all orders
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Dipole-hadron scattering

The dipole is a direct probe of the gluon distribution in the hadronic target

A dipole couples to the electric (color) field: V (r) = gritaEia

Forward scattering =⇒ two gluon exchange at LO (“single scattering”)

g2rirjtatb〈EiaEjb 〉 =
1

2
g2CF r

2〈EiaEia〉∝ αsCF r
2 xG(x,Q2 = 1/r2)

σdipole(r, x) ' 2π2αsr
2 CF
Ng

xG(x, 1/r2) ' 2πR2
[
r2Q2

s(x)
]
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Multiple scattering

A hadronic cross section cannot growth with E “much faster” than the
geometric cross-section

σ(E) ≤ 2πR2 ln2(E/M) : Froissart bound

Single scattering is a good approximation only so long as rQs(x)� 1

When r & 1/Qs(x), the scattering probes a dense gluon distribution

multiple scattering should become important
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Eikonal approximation (1)

Multiple scattering can be resummed in the eikonal approximation

the transverse coordinates (x⊥, y⊥) of the quark/antiquark are not
changed by the scattering off the shockwave

∆x⊥ ' v⊥L ∼
p⊥
qz

1

Pz
� λ⊥ ∼

2

p⊥
or

p2
⊥

2qzPz
� 1

automatic, since p2
⊥ < Q2 and x = Q2/(2q · P )� 1

Convenient to use the transverse coordinate representation (cf. Markus)
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Eikonal approximation (2)

Optical theorem: total cross-section = imaginary part of the forward
scattering amplitude

σdipole(r, x) = 2

∫
d2b T (r, b, x)

r = x⊥ − y⊥: dipole size

b = (x⊥ + y⊥)/2: impact parameter

T (r, b, x) = 1− 〈Ŝ〉: dipole amplitude

T ≤ 1 : unitarity bound

S-matrix operator: Ŝ = T ei
∫

d4xLint(x) with Lint(x) = jµa (x)Aaµ(x)

jµa (x) : color current of the dipole; Aaµ(x) : color field of the target

One quark: jµa (x) ' gvµtaδ(z−t)δ(2)(x⊥−x0
⊥); vµ = pµ

p0
= (1, 0, 0, 1)
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Eikonal approximation (2)

Optical theorem: total cross-section = imaginary part of the forward
scattering amplitude

σdipole(r, x) = 2

∫
d2b T (r, b, x)

r = x⊥ − y⊥: dipole size

b = (x⊥ + y⊥)/2: impact parameter

T (r, b, x) = 1− 〈Ŝ〉: dipole amplitude

T ≤ 1 : unitarity bound

S-matrix operator: Ŝ = T ei
∫

d4xLint(x) with Lint(x) = jµa (x)Aaµ(x)

jµa (x) : color current of the dipole; Aaµ(x) : color field of the target

A dipole: jµa (x) ' gvµtaδ(z−t)
{
δ(2)(x⊥−x0

⊥)− δ(2)(x⊥−y0
⊥)
}
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Eikonal approximation (3)

vµ = (1, 0, 0, 1) =⇒ vµAaµ = A0
a −Aza

Ŝq(x⊥) = T ei
∫

dt ta(A0
a−Aza)(t,x⊥,z=t)≡ V (x⊥)

Convenient to use light–cone coordinates and momenta

x± =
1√
2

(
t± z

)

p± =
1√
2

(
p0 ± pz

)

p · x = p+x− + p−x+ − p⊥ · x⊥

dtdz = dx+dx−

Ultrarelativistic right mover (the dipole) : vµ =
√

2δµ+, vµAaµ =
√

2A−a

Left mover (the target): the roles of x+ and x− get interchanged
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Eikonal approximation (3)

vµ = (1, 0, 0, 1) =⇒ vµAaµ = A0
a −Aza

Ŝq(x⊥) = T ei
∫

dx+ taA−a (x+,x⊥,x
−=0)≡ V (x⊥)

Convenient to use light–cone coordinates and momenta

x± =
1√
2

(
t± z

)

p± =
1√
2

(
p0 ± pz

)

p · x = p+x− + p−x+ − p⊥ · x⊥

dtdz = dx+dx−

Ultrarelativistic right mover (the dipole) : vµ =
√

2δµ+, vµAaµ =
√

2A−a

Left mover (the target): the roles of x+ and x− get interchanged
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Wilson lines

V (x⊥) = T exp

{
ig

∫
dx+A−a (x+,x⊥)ta

}

The fundamental degrees of freedom for scattering in QCD at high energies

An exponential : multiple scattering is resummed to all orders

A−a (x): classical color field representing the small-x gluons in the target

A color matrix (here, in the fundamental representation)

A unitary matrix: V (x⊥)V †(x⊥) = 1 =⇒ a rotation of the quark color state

Ψi(x⊥) −→ Vji(x⊥) Ψi(x⊥)

A time-ordered exponential: color matrices do not commute with each other
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Wilson lines

VN (x⊥) = eigεA−N eigεA−N−1 · · · eigεA−1 eigεA−0
(
A−n ≡ A−a (x+

n ,x⊥)ta
)

The fundamental degrees of freedom for scattering in QCD at high energies

An exponential : multiple scattering is resummed to all orders

A−a (x): classical color field representing the small-x gluons in the target

A color matrix (here, in the fundamental representation)

A unitary matrix: V (x⊥)V †(x⊥) = 1 =⇒ a rotation of the quark color state

Ψi(x⊥) −→ Vji(x⊥) Ψi(x⊥)

Best understood with a discretization of time: x+
n = nε, n = 0, 1, · · ·N
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The dipole S-matrix

2 Wilson lines: V (x⊥) for the quark (q) and V †(y⊥) for the antiquark (q̄)

an antiquark has charge (−g) and propagates backwards in time

Color singlet: the same color states for q and q̄ before & after the scattering

sum over final color states & and average over the initial ones

Ŝdipole(x⊥,y⊥) =
1

Nc
V †ij(y⊥)Vji(x⊥) =

1

Nc
tr
(
V (x⊥)V †(y⊥)

)

Perturbative expansion: multiple scattering series ... for a quark

V (x⊥)= 1 + ig

∫
dx+A−a (x+,x⊥)ta

−g
2

2

∫
dx+

∫
dy+

[
θ(x+−y+)tatb + θ(y+−x+)tbta

]
A−a (x+)A−a (y+)

+O(g3)
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The dipole S-matrix

2 Wilson lines: V (x⊥) for the quark (q) and V †(y⊥) for the antiquark (q̄)

an antiquark has charge (−g) and propagates backwards in time

Color singlet: the same color states for q and q̄ before & after the scattering

sum over final color states & and average over the initial ones

Ŝdipole(x⊥,y⊥) =
1

Nc
V †ij(y⊥)Vji(x⊥) =

1

Nc
tr
(
V (x⊥)V †(y⊥)

)

Perturbative expansion: multiple scattering series ... and for the dipole

Ŝdipole(x⊥,y⊥) = 1− g2

4Nc

[
A−a (x⊥)−A−a (y⊥)

]2
+O(g3)

A−a (x⊥) ≡
∫

dx+A−a (x+,x⊥), tr ta = 0, tr(tatb) =
1

2
δab

Color non-commutativity becomes important at O(g3) and higher
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The target averaging

The color fields A−a are random fields whose correlators characterize the
distribution of small-x gluons in the target (proton, nucleus)

Observables are obtained after averaging over these fields

E.g. A single scattering is probing a 2-point function:

A−a (x⊥)−A−a (y⊥) ' (xi⊥−yi⊥)
∂

∂bi
A−a (b⊥) = riF i−a (b⊥) : chromo-electric field

After taking the square and averaging over A− =⇒ the gluon distribution
∫ Q2

d2k

∫

x,y

eik·(x−y)
〈
F i−a (x)Ṽab(x,y)F i−b (y)

〉
∝ xG(x,Q2)

To compute multiple scattering, one needs all the n-point functions

〈Sxy〉 =

∫
[DA−] W [A−]

1

Nc
tr
(
VxV

†
y

)
[A−]

W [A−]: functional probability distribution (gauge-invariant)

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 57 / 116



The target averaging

The color fields A−a are random fields whose correlators characterize the
distribution of small-x gluons in the target (proton, nucleus)

Observables are obtained after averaging over these fields

E.g. A single scattering is probing a 2-point function:

A−a (x⊥)−A−a (y⊥) ' (xi⊥−yi⊥)
∂

∂bi
A−a (b⊥) = riF i−a (b⊥) : chromo-electric field

After taking the square and averaging over A− =⇒ the gluon distribution
∫ Q2

d2k

∫

x,y

eik·(x−y)
〈
F i−a (x)Ṽab(x,y)F i−b (y)

〉
∝ xG(x,Q2)

To compute multiple scattering, one needs all the n-point functions

〈Sxy〉Y =

∫
[DA] WY [A]

1

Nc
tr
(
VxV

†
y

)
[A]

includes the target evolution with Y = ln(1/x) (here x = k−/P−)
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Color Glass Condensate

Small–x gluons : classical color fields Aµa [ρ] radiated by a frozen distribution
ρa of color charges representing partons with x′ � x

lifetimes are strongly ordered by Lorentz time dilation: ∆t = 2xPz/k
2
⊥

WY [ρ]: CGC weight function, built via renormalization group (“JIMWLK”)

successively integrating out gluons in layers of x′: high-energy evolution

initial condition at x′ ∼ 0.1÷ 0.01: McLerran-Venugopalan model
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Dipole scattering in the MV model (1)

A large nucleus (A� 1) & not too small values of x (ᾱ ln 1/x� 1)

No quantum evolution: the only color sources are the A×Nc valence quarks

Independent scatterings =⇒ the multiple scattering series exponentiates

S(r) = e−T0(r)

T0(r, x) ' παsr2CF
Ng

xG
(0)
A (x, 1/r2)

R2
A

xG
(0)
A (x,Q2) =

αsCFANc
π

ln
Q2

Λ2

The dipole scatters off all the quarks within an area ∼ r2 around its impact
parameter b⊥ =⇒ a tube with length L = RA = RA1/3

No explicit b⊥ dependence: target assumed to be homogeneous in ⊥ plane
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Dipole scattering in the MV model (1)

A large nucleus (A� 1) & not too small values of x (ᾱ ln 1/x� 1)

No quantum evolution: the only color sources are the A×Nc valence quarks

Independent scatterings =⇒ the multiple scattering series exponentiates

S(r) = e−T0(r)

S(r) = exp

{
−r

2Q2
0A

4
ln

1

r2Λ2

}

Q2
0A ≡

2α2
sCFA

1/3

R2

Q2
0A: color charge squared of the valence quarks per unit area

ln(1/r2Λ2): gluon exchanges within the range r < ∆x⊥ < 1/Λ
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Dipole scattering in the MV model (2)

S(r) = 1− T (r) = e−T0(r) = exp

{
−r

2Q2
0A

4
ln

1

r2Λ2

}

S(r)→ 1 (i.e. T (r)→ 0) when r → 0 : color transparency

T (r) ≤ 1 for any r (and similarly S(r) ≤ 1) : unitarity bound satisfied

Scattering is weak, i.e. T (r) ' T0(r)� 1, so long as the exponent is small.

Scattering becomes strong, i.e. T (r) ∼ O(1), when T0(r) ∼ O(1)

the dipole should be large enough

Saturation momentum Qs: conventionally defined as T0(r) = 1 for 2
r = Qs

Q2
s(A) = Q2

0A ln
Q2
s(A)

4Λ2
∝ A1/3 lnA1/3

Gluon saturation in the nucleus manifests as multiple scattering for the probe

typical scale for the onset of non-linear physics
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Particle production in pA collisions
A quark initially collinear with the proton acquires a transverse momentum
p⊥ ∼ Qs via multiple scattering off the saturated gluons

Formally, a 2→ 1 process: qg → q (in contrast to collinear factoriz.: 2→ 2)

p

x

p± =
p0 + pz√

2
=
p⊥√

2
e±η

η = − ln tan θ
2 : quark rapidity in the COM frame (Q+ = P− =

√
s/2)

xp : longitudinal fraction of the quark in the proton

Xg : longitudinal fraction of the gluon in the target
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Particle production in pA collisions
A quark initially collinear with the proton acquires a transverse momentum
p⊥ ∼ Qs via multiple scattering off the saturated gluons

Formally, a 2→ 1 process: qg → q (in contrast to collinear factoriz.: 2→ 2)

p

x

xp ≡
p+

Q+
=
p⊥√
s

eη

Xg ≡
p−

P−
=
p⊥√
s

e−η

Xg � xp when η > 0

η = − ln tan θ
2 : quark rapidity in the COM frame (Q+ = P− =

√
s/2)

xp : longitudinal fraction of the quark in the proton

Xg : longitudinal fraction of the gluon in the target
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Multiple scattering

The quark exchanges transverse momentum with the gluons in the target

a random process leading to a distribution in the final momentum k⊥

Transverse momentum broadening can be studied in the eikonal approx.

fixed transverse coordinate, but the transverse momentum can vary

Amplitude: Mij(k⊥) ≡
∫

d2x⊥ e−ix⊥·k⊥ Vij(x⊥)

Wilson line: V (x⊥) = T exp

{
ig

∫
dx+A−a (x+,x⊥)ta

}
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Multiple scattering

Amplitude: Mij(k⊥) ≡
∫

d2x⊥ e−ix⊥·k⊥ Vij(x⊥)

Cross-section:
dσ

dηd2k⊥
' xpq(xp, Q

2)
1

Nc

〈∑

ij

|Mij(k⊥)|2
〉

Xg

Average over the color fields A− in the target (CGC)

Two Wilson lines at different transverse coordinates, traced over color
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Dipole picture for pA collisions

Equivalently: elastic S-matrix for a qq̄ color dipole (here, a fictitious dipole)

S(x⊥,y⊥;Xg) ≡
1

Nc

〈
tr
[
V (x⊥)V †(y⊥)

]〉
Xg

dσ

dηd2k
' xpq(xp)

∫
d2xd2y

(2π)2
e−i(x−y)·k S(x,y;Xg)

Fourier transform S(k, Xg) of the dipole S-matrix

“unintegrated gluon distribution”, or “dipole TMD”
Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 64 / 116



Momentum broadening in the MV model (1)

Consider an incoming quark for simplicity and assume S(x,y) = S(r)

dN

d2k
=

∫
d2r

(2π)2
e−ik·r e−

1
4 r

2Q2
0A ln 1

r2Λ2

Would-be a Gaussian integration ... if there were not for the logarithm

Two interesting situations which allow for simple results

“Typical values for k⊥”: k⊥ ∼ Qs, as transferred by multiple scattering

integral cut off at r ∼ 1/Qs by the S-matrix S(r)

replace 1/r2 → Q2
s within the argument of the log

dN

d2k
' 1

πQ2
s(A)

e−k
2
⊥/Q

2
s(A)

a Gaussian distribution: random walk in k

〈k2
⊥〉 ≡

∫
d2k k2

⊥
dN

d2k
= Q2

s(A) ∝ L = RA1/3
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Momentum broadening in the MV model (1)

Consider an incoming quark for simplicity and assume S(x,y) = S(r)

dN

d2k
=

∫
d2r

(2π)2
e−ik·r e−

1
4 r

2Q2
0A ln 1

r2Λ2

Would-be a Gaussian integration ... if there were not for the logarithm

Two interesting situations which allow for simple results

Large k⊥ � Qs, as given by a single hard scattering

integral cut off at r ∼ 1/k⊥ by the exponential

rQs � 1 =⇒ one can expand S ' 1− T0 (one scattering)

dN

d2k
' Q2

0A

πk4
⊥

an approximate version of the collinear factorization: qq → qq

dσ

dηd2k
' xpq(xp)

α2
sC

2
F

2k4
⊥

xAqA(xA) , xAqA(xA) ≡ ANc
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High-energy factorization for pA (“hybrid”)

After scattering, the quark must “fragment into hadrons” : Dh/q(z, µ
2)

dσh
dηd2p

=

∫
dz

z2
xpq(xp, µ

2)

[∫

x,y

e−i(x−y)·k S(x,y;Xg)

]
Dh/q(z, µ

2)

There is also a gluon-initiated channel, albeit less important when xp ∼ O(1)

Each soft gluon emission brings in a factor ᾱ ln(1/Xg)
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Hybrid factorization at leading order

(Kovchegov and Tuchin, 2002; Dumitru, Hayashigaki, and Jalilian-Marian, 2005)

dσh
dηd2p

=

∫
dz

z2
xpq(xp, µ

2)

[∫

x,y

e−i(x−y)·k S(x,y;Xg)

]
Dh/q(z, µ

2)

Collinear factorization for the incoming proton/outgoing hadron

LO DGLAP evolution for quark distribution/ fragmentation

High-energy (CGC) factorization for the quark-nucleus scattering

LO JIMWLK (BK) for target gluon distribution (dipole S-matrix)

Natural, but non-trivial already at leading order

one needs to prove the factorization of the two types of evolution

The dipole picture is preserved by the high-energy evolution up to NLO

(Mueller and Munier, 2012; Chirilli, Xiao, and Yuan, 2012)
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The high-energy evolution of the target

〈
tr
(
VxV

†
y

)〉
Xg

=

∫ [
DA−]WXg [A−] tr

(
VxV

†
y

)

JIMWLK: functional equation for the CGC weight function WXg [A−]

gluon emissions with smaller and smaller X = p−/P−, down to Xg

non-linear effects in both the evolution (gluon saturation) and the
collision (multiple scattering)
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Shifting to projectile evolution

The evolution can be shared between dilute projectile and dense target

JIMWLK evolution in X = p−/P− from X0 ∼ O(1) down to Xf

BK evolution in x = p+/Q+ from x0 ∼ xp down to xf
the evolution of the dipole is conceptually simpler

chose xf ∼ Xg (i.e. Xf ∼ X0): target described by the MV model
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Dipole evolution

Probability ∼ αs ln(1/x) for emitting a soft (x� 1) gluon

x ≡ k+/q+ : longitudinal momentum fraction for a right mover

Gluons must be emitted and reabsorbed within the dipole (color neutrality)

x2 =
k+

q+
� x1 =

p+

q+
� 1 , Y = ln

1

xmin
= ln

s

Q2

Leading logarithmic approx: resum (ᾱY )n with n ≥ 1

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 70 / 116



One step in the BK evolution (1)

To construct the evolution equation, it is enough to look at the first emission

The gluon can be exchanged between the quark and the antiquark

... or be emitted and reabsorbed by a same fermion (“self-energy graph”)

In both cases, the gluon may cross the shockwave (“real contributions”)

... or not ! “Virtual corrections”, or “evolution in the initial/final state”
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One step in the BK evolution (2)

And of course there are several possible permutations of the gluon vertices

‘Real contributions’: the soft gluon can interact with the shockwave

the system which scatters: a 3-parton system (qq̄g)

y

x

0 8

z

8ï

t1

2t

0

z

0

z

0

z

‘Virtual contributions’: only the original qq̄ dipole interacts

0

z

0

z

0

z

0

z
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One step in the BK evolution (3)

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

‘Real’ term: the gluon emitted at x hits the shockwave a z

g
(x− z)i

(x− z)2
: amplitude for gluon emission and propagation from x to z

Wilson line for the gluon at z in adjoint representation: (T a)bc = ifabc

Ṽ (z) = T exp

{
ig

∫
dx+A−a (x+,x⊥)T a

}
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One step in the BK evolution (3)

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

‘Real’ term: the gluon emitted at x hits the shockwave a z

g
(x− z)i

(x− z)2
: amplitude for gluon emission and propagation from x to z

Not a closed equation: evolution couples Sqq̄(x,y) to Sqq̄g(x,y, z)

not a surprise: one additional gluon that is measured by the scattering
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BK evolution at large Nc

A closed evolution equation can be obtained in the multi-color limit Nc →∞
finite-Nc corrections are suppressed as 1/N2

c . 10% for Nc = 3

At large Nc, a gluon can be replaced by a quark-antiquark pair

gluon emission by a dipole ≈ dipole splitting into 2 dipoles

d1SY (x,y) ' −αsNc
2π2

dY

∫

z

(x−z)i

(x−z)2

(y−z)i

(y−z)2

{
SY (x, z)SY (z,y)−SY (x,y)

}

At large Nc, expectation values of colorless operators factorize
〈

tr
(
VxV

†
z

)

Nc

tr
(
VzV

†
y

)

Nc

〉

Y

' SY (x, z)SY (z,y)
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BK evolution at large Nc

A closed evolution equation can be obtained in the multi-color limit Nc →∞

finite-Nc corrections are suppressed as 1/N2
c . 10% for Nc = 3

At large Nc, a gluon can be replaced by a quark-antiquark pair

gluon emission by a dipole ≈ dipole splitting into 2 dipoles

Similar manipulations for self-energy graphs (opposite sign, due to q̄ → q)

d2SY (x,y) ' αsNc
2π2

dY

∫

z

1

(x−z)2

{
SY (x, z)SY (z,y)−SY (x,y)

}
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Fierz identities & the large Nc limit

Fierz identities =⇒ all color structures in terms of fundamental Wilson lines

Ṽ ab(z) = 2 tr
(
ta V (z) tb V †(z)

)

SU(Nc) representations: 8 = 3× 3− 1, N2
c − 1 = Nc ×Nc − 1

a gluon = a quark-antiquark pair minus a “photon”

taij t
a
kl =

1

2
δil δjk −

1

2Nc
δij δkl

Ṽab(z)
1

Nc
tr
(
V (x)tb V †(y)ta

)
=
Nc
2

{
tr
(
VxV

†
z

)

Nc

tr
(
VzV

†
y

)

Nc
− 1

N2
c

tr
(
VxV

†
y

)

Nc

}
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Fierz identities & the large Nc limit

Fierz identities =⇒ all color structures in terms of fundamental Wilson lines

Ṽ ab(z) = 2 tr
(
ta V (z) tb V †(z)

)

SU(Nc) representations: 8 = 3× 3− 1, N2
c − 1 = Nc ×Nc − 1

a gluon = a quark-antiquark pair minus a “photon”

taij t
a
kl =

1

2
δil δjk −

1

2Nc
δij δkl

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)〉

Y

=
Nc
2

〈
tr
(
VxV

†
z

)

Nc

tr
(
VzV

†
y

)

Nc
− 1

N2
c

tr
(
VxV

†
y

)

Nc

〉

Y
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Fierz identities & the large Nc limit

Fierz identities =⇒ all color structures in terms of fundamental Wilson lines

Ṽ ab(z) = 2 tr
(
ta V (z) tb V †(z)

)

SU(Nc) representations: 8 = 3× 3− 1, N2
c − 1 = Nc ×Nc − 1

a gluon = a quark-antiquark pair minus a “photon”

taij t
a
kl =

1

2
δil δjk −

1

2Nc
δij δkl

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)〉

Y

' Nc
2
SY (x, z)SY (z,y) when Nc →∞

In the large-Nc limit, expectation values of colorless operators factorize
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Fierz identities & the large Nc limit

Fierz identities =⇒ all color structures in terms of fundamental Wilson lines

Ṽ ab(z) = 2 tr
(
ta V (z) tb V †(z)

)

SU(Nc) representations: 8 = 3× 3− 1, N2
c − 1 = Nc ×Nc − 1

a gluon = a quark-antiquark pair minus a “photon”

taij t
a
kl =

1

2
δil δjk −

1

2Nc
δij δkl

Adding the “virtual” contribution and using CF =
N2
c−1

2Nc
' Nc/2

〈
Ṽab(z)

Nc
tr
(
V (x)tb V †(y)ta

)
−CF
Nc

tr
(
VxV

†
y

)〉

Y

' Nc
2

{
SY (x, z)SY (z,y)−SY (x,y)

}

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 75 / 116



The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)−SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz ≡
(x−y)2

(x−z)2(y−z)2
=

[
zi−xi

(z−x)2
− zi−yi

(z−y)2

]2

; ᾱ ≡ αsNc
π

Large Nc : the original dipole splits into two new dipoles

y

x

z

y

x

z

y

x

z

Differential probability for dipole splitting: dP = ᾱ
2πMxyz d2z dY

Beyond large Nc one cannot write a closed equation for SY (x,y):

Balitsky-JIMWLK hierarchy: n-point functions of Wilson lines
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The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)− SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2

Cancellations between large-distance contributions from “exchange” (qq̄) and
“self-energy” (qq or q̄q̄) graphs, by color neutrality
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The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)− SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2

Cancellations between large-distance contributions from “exchange” (qq̄) and
“self-energy” (qq or q̄q̄) graphs, by color neutrality

color transparency: Mxyz ∝ (x− y)2 = r2

a zero-size “dipole” cannot emit, as it has zero charge

rapid decrease of the emission probability at large z⊥:

Mxyz '
r2

(z − x)4
when |z − x| ' |z − y| � r
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The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)− SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2

Short-distance poles (z = x or z = y) cancel between ‘real’ and ‘virtual’

z → x =⇒ SY (x, z)SY (z,y) → I× SY (x,y)
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BFKL & Unitarity

Non-linear generalization of the BFKL equation for Txy ≡ 1− Sxy

∂Txy
∂Y

=
ᾱ

2π

∫
d2z

(x− y)2

(x− z)2(y − z)2

[
Txz + Tzy − Txy −TxzTzy

]

Non-linear term T 2: the simultaneous scattering of both daughter dipoles
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BFKL & Unitarity

Non-linear generalization of the BFKL equation for Txy ≡ 1− Sxy

∂Txy
∂Y

=
ᾱ

2π

∫
d2z

(x− y)2

(x− z)2(y − z)2

[
Txz + Tzy − Txy

]

When scattering is weak, T � 1, one recovers the linear BFKL equation

conformal symmetry: x→ ax V
∫

d2zMxyz = invariant

pure powers r2γ are eigenfunctions of the BFKL kernel:

K
BFKL

⊗ r2γ = ᾱχ(γ)r2γ for any 0 < γ < 1

a basis of exact solutions: Tγ(r, Y ) ∝ r2γ eᾱχ(γ)Y

general solution: superposition in γ (Mellin transform)

exponential increase with Y leading to unitarity violation
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BFKL & Unitarity

Non-linear generalization of the BFKL equation for Txy ≡ 1− Sxy

∂Txy
∂Y

=
ᾱ

2π

∫
d2z

(x− y)2

(x− z)2(y − z)2

[
Txz + Tzy − Txy −TxzTzy

]

The non-linear term in BK restores unitarity: T (r, Y ) ≤ 1 for any r and Y

T = 0 (no scattering) and T = 1 (total absorption) are fixed points

Saturation momentum Qs(Y ): T (r, Y ) = 0.5 when r = 1/Qs(Y )

Qs(Y ) increases rapidly with Y due to the BFKL dynamics

T
BFKL

(
r =

1

Qs
, Y
)
∼
(
Q2

0

Q2
s

)γ
eᾱχ(γ)Y = 0.5 =⇒ Q2

s(Y ) ' Q2
0 eᾱ

χ(γ)
γ Y

Mellin superposition selects γs ⇒ λs = ᾱχ(γs)
γs

: saturation exponent
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The saturation front

Numerical solutions to BK with initial condition from the MV model

Logarithmic variable ρ ≡ ln(1/r2Q2
0) =⇒ large ρ ↔ small r

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-5  0  5  10  15  20  25

T
(ρ

,Y
)

ρ=log(1/r
2
)

LO, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16

T (r, Y = 0) = 1− e−
r2Q2

0
4 ln 1

r2Λ2

T (ρ, Y ) = 0.5 when ρ = ρs(Y )

T (ρ, Y ) '





e−γs(ρ−ρs) e−
(ρ−ρs)2

2βsᾱY (ρ > ρs)

1 (ρ . ρs)

γs ' 0.63 : anomalous dimension 1− γs ' 0.37

Geometric scaling: T (r, Y ) '
(
r2Q2

s(Y )
)γs when ρ− ρs �

√
2βsᾱY
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The saturation front

Numerical solutions to BK with initial condition from the MV model

Logarithmic variable ρ ≡ ln(1/r2Q2
0) =⇒ large ρ ↔ small r
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,Y
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ρ=log(1/r
2
)

LO, α- s=0.25

Y=0
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Y=8
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Y=16

 0

 0.2

 0.4

 0.6

 0.8

 1
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 0  5  10  15  20

d
lo

g
[Q

2 s
(Y

)]
/d

Y

Y

speed, α- s=0.25

LO

Saturation exponent λs ≡ dρs
dY : the speed of the saturation front

Constant speed for ᾱY & 4: ρs(Y ) ' λsY with λs ' 4.88ᾱ
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Saturation models for HERA

Already before BK equation: fits to small-x DIS using the idea of saturation

dipole factorization + saturation models for the dipole cross-section

σγ∗p(Q
2, x) =

∫

r,z

∣∣Ψγ∗(r, z;Q
2)
∣∣2σdip(r, x)

GBW model (Golec-Biernat, Wüsthoff, ’99)

σdip(r, x) = σ0

[
1− e−r

2Q2
s(x)
]
, Q2

s(x) ∝ 1

xλ

“MV model with ad-hoc evolution in Qs”
10

-1

1

10

10 2

10 3

10 -3 10 -2 10 -1 1 10 10 2 10 3

E665
ZEUS+H1 high Q2 94-95
H1 low Q2 95
ZEUS BPC 95
ZEUS BPT 97

x<0.01

all Q2

!

"
to

t#
*p

  [
µ

b]
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Saturation models for HERA

Already before BK equation: fits to small-x DIS using the idea of saturation

dipole factorization + saturation models for the dipole cross-section

σdip(r, x) = σ0

[
1− e−r

2Q2
s(x)
]
, Q2

s(x) ∝ 1

xλ

built-in geometric scaling

good fit at x ≤ 0.01 despite simplicity

data clearly prefer a small value for the
saturation exponent: λ ' 0.3

inspired the search for geometric scaling
(Staśto, Golec-Biernat, Kwieciński, 2000)

σ(x,Q2) vs. τ ≡ Q2/Q2
s(x)

10
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x<0.01

all Q2

!

"
to

t#
*p

  [
µ

b]
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Adding running coupling: rcBK

BK naturally explains geometric scaling, but λs ' 4.88ᾱ ∼ 1 is way too large

Using a running coupling dramatically slows down the evolution

λs ' 0.3 in good agreement with the data

 0
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 0.6
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 0  5  10  15  20

d
lo

g
[Q

2 s
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/d
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Y
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LO

 0

 0.05
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 0.15

 0.2

 0.25

 0.3

 0.35

 0  5  10  15  20

d
lo

g
[Q

2 s
(Y

)]
/d

Y

Y

speed, β0=0.72, smallest

LO

Rather successful phenomenology based on rcBK (see below)
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Adding running coupling: rcBK

BK naturally explains geometric scaling, but λs ' 4.88ᾱ ∼ 1 is way too large

Using a running coupling dramatically slows down the evolution

λs ' 0.3 in good agreement with the data
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g
[Q

2 s
(Y

)]
/d

Y

Y
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LO
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d
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g
[Q

2 s
(Y
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/d
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Y

speed, β0=0.72, smallest

LO

But why should the effect of the running be so important ?!

the running is a next-to-leading order effect and is only logarithmic
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Pulled front
The saturation front is pulled by the BFKL growth in the dilute tail

this is why one can compute λs from BFKL + saturation boundary

deep connexion to “reaction-diffusion problem” in statistical physics
(Munier and Peschanski, 2003; Iancu, Mueller and Munier, 2004)

The scale for the running coupling is Qs and increases exponentially with ᾱY

Y

Y

Y Y

1

T

1

1

1

T

1/2

 

!

1/2

!( ) !

>2 1

αs(Q
2
s) =

1

β0 ln
Q2
s

Λ2

=
1

β0(ρs(Y ) + ρ0)
' 1

β0λsY
: decreasing with Y
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rcBK fit to F2 at HERA (+ prediction for FL)

(Albacete et al, hep-ph/09021112)
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rcBK fit to forward particle production at RHIC

(Albacete, Dumitru, Fujii, Nara, arXiv:1209:2001)

Fit parameters: initial condition for the rcBK equation + K-factors

dNh
dη d2k

∣∣∣
LO

= Kh

∫ 1

xp

dz

z2

xp
z
q
(xp
z

)
S
(
k

z
,Xg

)
Dh/q(z)

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 84 / 116



The nuclear modification factor

RpA ≡
1

A

dσpA/d
2p⊥dη

dσpp/d2p⊥dη
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A

u
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u
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It would be equal to one if pA = incoherent superposition of pp collisions

any deviation from unity is a signature of nuclear (high density) effects

At RHIC: Rd+Au, hence A→ 2A with A = 197

central rapidity (η ' 0) and p⊥ & 2 GeV: Rd+Au > 1 (“Cronin peak”)

forward rapidity (η > 1) : the peak disappears when η & 1

larger forward rapidities (η & 3): Rd+Au < 1 (“suppresion”)
Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 85 / 116



Consistent with the CGC

RpA ≡
1

A1/3

dNpA/d
2p⊥dη

dNpp/d2p⊥dη
=

1

A1/3

SA(p⊥, Xg)

Sp(p⊥, Xg)

S(p⊥, Xg) =

∫

r

e−ir·p S(r, Xg)

Xg =
p⊥√
s

e−η

η = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 1, 1.4 and 2 (BK equation: Albacete et al, 2003)

Use BK equation for S(r, Xg) with initial condition from the MV model

Exactly the same features as in the RHIC data !

What is the underlying physical picture ?
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Midrapidity: the Cronin peak
d+Au collisions at RHIC:

√
s = 200 GeV, p⊥ ∼ 2 GeV and η ≈ 0

x1 = x2 ' 0.01 =⇒ little evolution, the proton is still dilute

nucleus: incoherent superposition of valence quarks (MV model)

S(p⊥)

4π
'





1

Q2
s(A)

e
− p2

⊥
Q2
s(A)

,
for the nucleus

Q2
0p

p4
⊥
, for the proton

remember the distinction between the two scales Q2
s(A) and Q2

0A :

Q2
s(A) = Q2

0A ln
Q2
s(A)

Λ2
, Q2

0A = A1/3Q2
0p

RpA =
1

A1/3

SA(p⊥)

Sp(p⊥)
' ln

Q2
s(A)

Λ2
×
[

p2
⊥

Q2
s(A)

]2

e
− p2

⊥
Q2
s(A)

A peak at p⊥ = 2Qs(A) with height ln [Q2
s(A)/Λ2] > 1
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Forward rapidities: RpA suppression

Why is the Cronin peak washed out when increasing η (decreasing Xg) ?

The gluon distribution in the proton rises faster than that in the nucleus

growth driven by BFKL dynamics in the dilute tail at p⊥ > Qs

the logarithmic phase-space ρ = ln(p2
⊥/Q

2
s) is larger for the proton

than for the nucleus, since Q0p < Q0A

ρp = ln
p⊥
Q2

0p

> ρA = ln
p⊥
Q2

0A

since Q2
0A = A1/3Q2

0p
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Rp+Pb at the LHC for central rapidities
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FIG. 11: The nuclear modification factor Rp+Pb for single inclusive charged hadrons in minimum-bias p+Pb collisions at
5 TeV collision energy at rapidities 0, 2, 4 and 6. The grey bands at y=0 and 2 correspond to the rcBK-MC results using
kt-factorization, Eq. (13). In turn, the yellow bands at η = 2, 4 and 6 have been obtained using the LO hybrid formalism,
Eq. (19), in minimum bias collisions. The blue bands between the dotted lines also correspond to LO hybrid results for
collisions with a centrality cut Npart > 10. Finally the dashed dotted curves at η = 2, 4 and 6 correspond to minimum bias
collisions calculated within the hybrid formalism incl. the inelastic term from Eq. (20) with αs = 0.1.

most forward rapidities.
In Fig. 12 we show Rp+Pb for two different centrality classes selected according to the number of participant

nucleons12. At pt = 1 GeV we observe the expected pattern of stronger suppression (smaller Rp+Pb) for more
central collisions. In the Npart > 10 centrality class suppression now persists up to pt = 2 − 3 GeV.
For the UGD with γ = 1 MV-model initial condition (lower end of the bands in Fig. 12) one observes, generically,

the expected pattern: i) at y = 0 there is suppression at low pt while Rp+Pb → 1 with increasing pt as the rapidity
evolution window shrinks; ii) there is slightly stronger suppression at low pt for Npart > 10 central collisions while
the centrality cut has very little effect at high pt; iii) the suppression increases with rapidity and Rp+Pb < 1 for
all pt <∼ 10 GeV at y = 2.
The behavior of Rp+Pb with AAMQS UGDs (γ = 1.119 initial condition, upper end of the bands in Fig. 12) in

central collisions is more intricate. At pt = 1 GeV we still find the expected decrease of Rp+Pb both with centrality
and rapidity. However, for pt >∼ 4 GeV we find that Rp+Pb is very similar at y = 0 and y = 2. This UGD exhibits
rather non-linear (in the valence charge density) anti-shadowing at high intrinsic kt and so particle production at
high pt in p+Pb collisions is dominated by fluctuations corresponding to a high valence charge density in the Pb
target (high Npart). This can be seen from the fact that at y = 2 and high pt there is little difference between the
minimum bias and Npart > 10 centrality classes.

12 In p+A collisions it is not straightforward experimentally to perform centrality selection via impact parameter cuts. Also, because
of large fluctuations impact parameter bins correspond to rather broad distributions of Npart.

Midrapidity (η ' 0) at the LHC is like η ∼ 2 at RHIC: x1 ∼ x2 ∼ 10−3

Cronin peak and small evolution compensate each other: RpA ' 1
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Rp+Pb at the LHC for central rapidities

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8  = 5.02 TeVNNsp-Pb  

| < 0.3cmsALICE, NSD, charged particles, |

Saturation (CGC), rcBK-MC
Saturation (CGC), rcBK
Saturation (CGC), IP-Sat

pP
b

R

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8 )0Shadowing, EPS09s (

LO pQCD + cold nuclear matter

 (GeV/c)
T

p
0 2 4 6 8 10 12 14 16 18 20

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8 HIJING 2.1

=0.28gs
=0.28gDHC, s

DHC, no shad.
DHC, no shad., indep. frag.

16

0 2 4 6 8 10 12
0

0.5

1

1.5

2

0

0.5

1

1.5

2

IP-Sat (Tribedy & Venugopalan)

rcBK (Tribedy & Venugopalan)

RpPb(η=0)
ch

EPS09 nPDF

pt (GeV/c)

rcBK-MC kt-factorization

0 2 4 6 8 10 12
0

0.5

1

1.5

2

0

0.5

1

1.5

2

RpPb(η=2)
ch

rcBK-MC, hyb LO+inel. term α=0.1

pt (GeV/c)

rcBK-MC, hybrid LO

rcBK-MC, kt-factorization

EPS09 nPDF

0 2 4 6 8 10 12
0

0.5

1

1.5

2

0

0.5

1

1.5

2

RpPb(η=4)
rcBK-MC, min bias

rcBK-MC, LO+inelastic term α=0.1

pt (GeV/c)

rcBK-MC, Npart >10

ch

cme= 5 TeV

EPS09 nPDF

0 2 4 6 8 10 12
0

0.5

1

1.5

2

0

0.5

1

1.5

2

RpPb(η=6)
rcBK-MC, min bias

rcBK-MC, LO+inelastic term α=0.1

pt (GeV/c)

rcBK-MC, Npart >10

ch

cme= 5 TeV

EPS09 nPDF

FIG. 11: The nuclear modification factor Rp+Pb for single inclusive charged hadrons in minimum-bias p+Pb collisions at
5 TeV collision energy at rapidities 0, 2, 4 and 6. The grey bands at y=0 and 2 correspond to the rcBK-MC results using
kt-factorization, Eq. (13). In turn, the yellow bands at η = 2, 4 and 6 have been obtained using the LO hybrid formalism,
Eq. (19), in minimum bias collisions. The blue bands between the dotted lines also correspond to LO hybrid results for
collisions with a centrality cut Npart > 10. Finally the dashed dotted curves at η = 2, 4 and 6 correspond to minimum bias
collisions calculated within the hybrid formalism incl. the inelastic term from Eq. (20) with αs = 0.1.

most forward rapidities.
In Fig. 12 we show Rp+Pb for two different centrality classes selected according to the number of participant

nucleons12. At pt = 1 GeV we observe the expected pattern of stronger suppression (smaller Rp+Pb) for more
central collisions. In the Npart > 10 centrality class suppression now persists up to pt = 2 − 3 GeV.
For the UGD with γ = 1 MV-model initial condition (lower end of the bands in Fig. 12) one observes, generically,

the expected pattern: i) at y = 0 there is suppression at low pt while Rp+Pb → 1 with increasing pt as the rapidity
evolution window shrinks; ii) there is slightly stronger suppression at low pt for Npart > 10 central collisions while
the centrality cut has very little effect at high pt; iii) the suppression increases with rapidity and Rp+Pb < 1 for
all pt <∼ 10 GeV at y = 2.
The behavior of Rp+Pb with AAMQS UGDs (γ = 1.119 initial condition, upper end of the bands in Fig. 12) in

central collisions is more intricate. At pt = 1 GeV we still find the expected decrease of Rp+Pb both with centrality
and rapidity. However, for pt >∼ 4 GeV we find that Rp+Pb is very similar at y = 0 and y = 2. This UGD exhibits
rather non-linear (in the valence charge density) anti-shadowing at high intrinsic kt and so particle production at
high pt in p+Pb collisions is dominated by fluctuations corresponding to a high valence charge density in the Pb
target (high Npart). This can be seen from the fact that at y = 2 and high pt there is little difference between the
minimum bias and Npart > 10 centrality classes.

12 In p+A collisions it is not straightforward experimentally to perform centrality selection via impact parameter cuts. Also, because
of large fluctuations impact parameter bins correspond to rather broad distributions of Npart.

Various models could be differentiated by going to forward rapidities

This could be measured e.g. by LHCb (large η & semi-hard p⊥)
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Forward di-hadron production in pA collisions

Saturation effects enter single-particle production via modifications in the
yield and spectrum at semi-hard transverse momenta k⊥ ∼ Qs(Xg)

In 2-particle production, they also affect the angular correlations

xp =
k1⊥√
s

eη1 +
k2⊥√
s

eη2 , Xg =
k1⊥√
s

e−η1 +
k2⊥√
s

e−η2

Focus on forward rapidities for both particles =⇒ xp ∼ O(1) and Xg � 1
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Forward di-hadron production in pA collisions

Saturation effects enter single-particle production via modifications in the
yield and spectrum at semi-hard transverse momenta k⊥ ∼ Qs(Xg)

In 2-particle production, they also affect the angular correlations

Measure pairs of particles and extract their correlation in azimuthal angle
∆φ = φ2 − φ1

C(∆φ) ≡ dNpair

d2p1⊥dη1d2p2⊥dη2
− dN

d2p1⊥dη1

dN

d2p2⊥dη2
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Forward di-hadron production in pA collisions

Saturation effects enter single-particle production via modifications in the
yield and spectrum at semi-hard transverse momenta k⊥ ∼ Qs(Xg)

In 2-particle production, they also affect the angular correlations

Collinear factorization : k1⊥ + k2⊥ ' 0 =⇒ a peak at ∆φ = π

a pair of hadrons propagating back-to-back in the transverse plane

In the presence of gluon saturation: |k1⊥ + k2⊥| ' Qs(Xg)

a broadening δφ ∼ Qs/k⊥ of the peak at ∆φ = π
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Di–hadron azimuthal correlations at RHIC

The reality is more nuanced

even in pp collisions, there is significant broadening in ∆φ, due to recoil
in jet fragmentation
in pA or AA, high-density effects may also reflect final-state
interactions, and not just gluon saturation

jet

jet
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p+p, d+Au and Au+Au collisions at RHIC (STAR)
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Di–hadron azimuthal correlations at RHIC

Midrapidities (η1 ∼ η2 ' 0) and semi-hard p⊥ ∼ 1÷ 3 GeV

p+p or d+Au: the peak at ∆Φ = π is visible and equally pronounced

Au+Au : strong suppression of the ‘away peak’ (final state effect)

Broadening in d+Au is controlled by jet fragmentation, like in p+p

What happens if one moves to forward rapidities (larger Qs(A)) ?

jet

jet

 (radians)! "
-1 0 1 2 3 4

)! 
"

 d
N/

d(
TR

IG
G

ER
1/

N

0

0.1

0.2
d+Au FTPC-Au 0-20%

p+p min. bias

Au+Au Central
)!

"
 d

N/
d(

Tr
ig

ge
r

1/
N

Ecole Joliot-Curie, La Grande Motte ’18 High energy QCD & the CGC Edmond Iancu 91 / 116



Forward rapidities: p+p vs. d+Au
k !

k !22

11
k

k
2

2

11

The broadening in d+Au is considerably stronger

Predicted by the CGC (Marquet, 2007; Albacete and Marquet, 2010)
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2 particle production in the CGC

The collinear quark radiates a gluon prior to, or after, the scattering

Up to four Wilson lines in the cross–section

At large Nc, this factorizes into color dipoles and quadrupoles

〈
Qx1x2x3x4

〉
Y

=
1

Nc

〈
tr(V †x1

Vx2V
†
x3
Vx4)

〉
Y

a generalization of the Weiszäcker-Williams gluon TMD (Cédric Lorcé)

This property holds for any multi-particle final state at large Nc
(Kovner and Lublinsky, 2012; Dominguez, Marquet, Stasto, and Xiao, ’12)
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With due respect to the target

How to compute the quadrupole ? How to work at Nc = 3 ?

Return to the viewpoint of target evolution: the CGC target average:

〈Qx1x2x3x4

〉
Y

=

∫
[Dρ] WY [ρ]

1

Nc
tr(V †x1

Vx2
V †x3

Vx4
)

The Wilson lines involve the A− component of the color field in the target

A−a (x): the classical color field produced by color charges with density ρa

Dab
ν F

νµ
b (x) = Jµa (x) = δµ−ρa(x+,x) =⇒ −∇2

⊥A
−
a (x) = ρa(x+,x)

Jµa ∝ vµ = δµ− for a ultrarelativistic left-mover

light-cone gauge A+
a = 0 (convenient for collision with a right mover)

Yang-Mills equations linearize since Aµa = δµ−A−a for this special Jµ

The functional probability distribution WY [ρ] describe the correlations of the
color charges with x′ � x, where Y = ln(1/x).
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JIMWLK evolution
(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and Kovner, 97–00)

The relevant color charges at small-x (leading logarithmic approximation):

valence quarks + soft gluons with 1� x′ � x

WY [ρ] is built by integrating out soft gluon fluctuations in (small) layers of x

x′ → bx′ with b� 1 but such that ᾱ ln(1/b)� 1 as well

Initial condition at low energy (x0 ∼ 0.01): MV model (valence quarks)

independent color sources

Gaussian weight function

W0[ρ] = N exp

{
−
∫

x+,x

ρa(x)ρa(x)

µ2(x)

}

µ2(x): density of color charge squared
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WY [ρ] is built by integrating out soft gluon fluctuations in (small) layers of x
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JIMWLK evolution
(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and Kovner, 97–00)

The relevant color charges at small-x (leading logarithmic approximation):

valence quarks + soft gluons with 1� x′ � x

WY [ρ] is built by integrating out soft gluon fluctuations in (small) layers of x

x′ → bx′ with b� 1 but such that ᾱ ln(1/b)� 1 as well

One step in the quantum evolution =⇒ JIMWLK Hamiltonian

The quantum gluon can scatter of the strong color fields generated in
previous steps =⇒ non-linear evolution
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JIMWLK evolution
(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and Kovner, 97–00)

The relevant color charges at small-x (leading logarithmic approximation):

valence quarks + soft gluons with 1� x′ � x

WY [ρ] is built by integrating out soft gluon fluctuations in (small) layers of x

x′ → bx′ with b� 1 but such that ᾱ ln(1/b)� 1 as well

One step in the quantum evolution =⇒ JIMWLK Hamiltonian

∂WY [ρ]

∂Y
= HJIMWLK

[
ρ,

δ

δρ

]
WY [ρ]

BK (Balitsky) equations are obtained after an integration by parts:

∂

∂Y
〈Ŝ〉Y =

∫
[Dρ]

(
HWY [ρ]

)
Ŝ[ρ] =

∫
[Dρ]WY [ρ]

(
HŜ[ρ]

)
=
〈
HŜ
〉
Y

But JIMWLK equation can actually be solved numerically (for Nc = 3)
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JIMWLK evolution in Langevin form (1)
Useful to compare projectile (dipole) and target (nucleus) evolutions

8 0

x

y

8

projectile: gluon emissions closer and closer to the target

target: color charges further and further away from the valence quarks

Uncertainty principle: decreasing x = k−/P− ↔ increasing ∆x+ ∼ 1/k−

JIMWLK evolution builds the color charge distribution in layers of x+

New sources are one-loop quantum fluctuations

random variables with a Gaussian distribution

can equivalently be represented as a Gaussian noise

A Langevin equation: random walk in the space of the Wilson lines
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JIMWLK in Langevin form (Blaizot, E.I., Weigert, ’03)

Discretize the rapidity interval: Y = nε, ε ≡ ln(1/b)

8 0

x

y

8

R L

Vx(nε+ ε) = exp
(
iεαaLxt

a
)
Vx(nε) exp

(
− iεαbRxt

b
)

αaR,L: the change δA−a at larger negative (R) or positive (L) values of x+

αaLx = g

∫

z

xi − zi
(x− z)2

νiaz , αaRx = g

∫

z

xi − zi
(x− z)2

Ṽ abz νibz

Noise νa: random color charge of the newly emitted gluon

〈νiax (mε)νjby (nε)〉 =
1

ε
δmnδ

ijδabδxy

Well suited for numerics: 2D lattice (Weigert and Rummukainen, ’03)
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Solving JIMWLK via Langevin

Several numerical implementations (Weigert and Rummukainen, ’03)

Lappi (2011); Schenke et al (since 2012); Roiesnel (2016)

Here: the lattice calculation of the dipole S-matrix par T. Lappi (2011)
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C(r) ≡ S(r, Y ) as a function of r and of rQs(Y ) =⇒ geometric scaling
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The mean field approximation

Gaussian Ansatz for WY [ρ]: “MV model with Y -dependent 2-point function”

all Wilson lines correlators (quadrupole etc) can be related to the
dipole S-matrix, as obtained by solving the BK equation
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Left: different combinations projectile–target

(Lappi and Mäntysaari, 2012; see also Stasto, Xiao, Yuan, 2011)

Right: comparison with RHIC data (PHENIX, 2012)
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AA collisions : Glasma & the Ridge

vn from 2–particle correlations
〈

dNpairs

d∆φ

〉
∝ 1 + 2

∞∑

n=1

〈
v2n
〉

cos(n∆φ)

The reference phases Ψn drop out in the convolution !
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < paT, p

b
T < 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality
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Nucleus–nucleus collisions
Introduction to AA collisions

Bookkeeping

Inclusive gluon spectrum

Loop corrections

CERN

François Gelis – 2007 Lecture III / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 9/65

Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)

“Dense–dense scattering” : much more complicated !

Non–linear effects enter at all levels

in both incoming wavefunctions: gluon saturation

in the scattering process: multiple interactions

in the partonic medium created by the early scattering: final–state
interactions
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Non–linear effects enter at all levels

2 CGC weight functions: WY1
[ρ1], WY2

[ρ2]

in the scattering process: multiple interactions

in the partonic medium created by the early scattering: final–state
interactions
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■ Dilute regime : one parton in each projectile interact
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(+ pileup of many simultaneous scatterings)

“Dense–dense scattering” : much more complicated !

Non–linear effects enter at all levels

2 CGC weight functions: WY1
[ρ1], WY2

[ρ2]

classical Yang–Mills equations with 2 sources: ρ1, ρ2

in the partonic medium created by the early scattering: final–state
interactions
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Nucleus–nucleus collisions
Introduction to AA collisions

Bookkeeping

Inclusive gluon spectrum

Loop corrections

CERN

François Gelis – 2007 Lecture III / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 9/65

Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)

“Dense–dense scattering” : much more complicated !

Non–linear effects enter at all levels

2 CGC weight functions: WY1
[ρ1], WY2

[ρ2]

classical Yang–Mills equations with 2 sources: ρ1, ρ2

kinetic theory, hydrodynamics, quark-gluon plasma, ...
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The initial conditions for heavy ion collisions

z 

t

incoming nuclei CGCs

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

The CGC describes particle production at early times: Glasma

Initial conditions for the subsequent evolution of this partonic matter

The state of the partonic matter at proper time τ ∼ 1/Qs
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CGC factorization for AA collisions

Numerically solve classical YM equations with 2 sources (2D lattice)

DνF
νµ(x) = δµ+ρ1(x) + δµ−ρ2(x)

Decompose the classical field Aµa in Fourier modes

B gluon spectrum for given configurations ρ1 and ρ2 (“event-by-event”)

Average over ρ1 and ρ2 using the CGC distributions of the nuclei
〈

dN

dY d2p⊥

〉
=

∫
[Dρ1Dρ2]WYbeam−Y [ρ1]WYbeam+Y

[ρ2]
dN

dY d2p⊥

∣∣∣∣
class

B JIMWLK evolution from Ybeam up to the rapidity Y of the produced gluon

Introduction

Bookkeeping

Classical fields

Factorization

● What is the problem ?

● Leading order

● Next to Leading Order

● Initial field perturbation

● JIMWLK Hamiltonian

● Extensions

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 36

What is the problem ?

■ For the single gluon spectrum in AA collisions, one would
like to establish a formula such as :

fi
dN

d3~p

fl

=
LLog

Z
ˆ
Dρ1 Dρ2

˜
WYbeam−y [ρ1]Wy+Ybeam

[ρ2]
dN

d3~p

˛
˛
˛
˛
LO

with
∂

∂Y
WY = HW

Y

p

ρ1ρ2 y + Ybeam- Ybeam

◆ All the leading logs of 1/x1,2 are absorbed in the W ′s

◆ The W ′s obey the JIMWLK evolution equation
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The color field of a single nucleus
What are the chromo-electric and magnetic fields created by a
ultrarelativistic slab of charges ?

non-Abelian generalization of the Liénard-Wiechert potentials

Weiszäcker-Williams fields describing quasi-real photons/gluons

Dab
ν F

νµ
b (x) = δµ−ρa(x+,x) =⇒ Aµa = δµ−A−a (x+,x)

Just one component (A−), independent of x− (LC time for the left mover)

field commutators vanish: Fµνa = ∂µAνa − ∂νAµa , as in QED

F i+a = 0, F+−
a = ∂+A−a =

∂A−a
∂x−

= 0 , F i−a = ∂iA−a : non-zero

Non-zero transverse components for the electric and the magnetic fields

F i± =
1√
2

(
F i0 ± F i3

)
=⇒

{
E1 ≡ −F 10 = F 13 ≡ B2

E2 ≡ −F 20 = F 23 ≡ −B1

F+− = 0 ⇒ E3 = B3 = 0

Fields vary over a distance ∼ 1/Qs =⇒ gluons typically have k⊥ ∼ Qs
Fields have strength ∼ 1/g =⇒ gluons have occupation numbers ∼ 1/αs
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The color field of a single nucleus
What are the chromo-electric and magnetic fields created by a
ultrarelativistic slab of charges ?

non-Abelian generalization of the Liénard-Wiechert potentials

Weiszäcker-Williams fields describing quasi-real photons/gluons

Ea ⊥ Ba ⊥ z

E⊥ ·B⊥ = 0 , |E⊥| = |B⊥| ∼
1

g

transverse polarizations

chromo-electromagnetic waves

Lorentz contraction: ∝ δ(x+)

Fields vary over a distance ∼ 1/Qs =⇒ gluons typically have k⊥ ∼ Qs
Fields have strength ∼ 1/g =⇒ gluons have occupation numbers ∼ 1/αs
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The scattering between two color sheets

Prior to scattering: purely transverse fields, localized near the 2 light-cones

During collision, mutual color rotations induce color charges on the sheets

longitudinal chromo-electric and chromo-magnetic fields

color strings (flux tubes) with typical transverse size 1/Qs
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During collision, mutual color rotations induce color charges on the sheets

longitudinal chromo-electric and chromo-magnetic fields

color strings (flux tubes) with typical transverse size 1/Qs
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Glasma (McLerran and Lappi, 06)

The ‘valence’ charges of the 2 nuclei rapidly separate from each other

The color field between the 2 recessing nuclei: ‘glasma’ (‘glass’ + ‘plasma’)

After a time τ ∼ 1/Qs, the transverse fields are regenerated

By that time, the partonic system becomes dilute (field strengths become of
O(1)), due to longitudinal expansion

Fourier mode decomposition =⇒ gluon production
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The gluon spectrum at early times (T. Lappi, 2011)

Numerical solutions to classical YM equations + rcJIMWLK evolution

0.25 0.5 1 2 4 8
k/Qs

0

2

4

6
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12

C(
k T)

y = 0
y = 1.30
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y = 3.89
y = 5.18
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p

T
/Q

s

adj
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1

1.2

p T

2  d
N

/d
2 p T

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

Left: unintegrated gluon distribution for any of the two incoming nuclei

C(k⊥, Y ) ≡ k2
⊥S(k⊥, Y ) = k2

⊥

∫

r

e−ir·k S(r, Y )

MV model (no evolution): C(k⊥) ' Q2
0/k

2
⊥
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Left: unintegrated gluon distribution for any of the two incoming nuclei

C(k⊥, Y ) ≡ k2
⊥S(k⊥, Y ) = k2

⊥

∫

r

e−ir·k S(r, Y )

BK evolution ⇒ anomalous dimension: C(k⊥, Y ) '
[
Q2
s(Y )/k2

⊥
]γs
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The gluon spectrum at early times (T. Lappi, 2011)

Numerical solutions to classical YM equations + rcJIMWLK evolution
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Right: spectrum of gluons produced in AA collisions at time τ ∼ 1/Qs(Y )

high p⊥ � Qs(Y ): the same anomalous dimension as in C(k⊥, Y )

small p⊥ . Qs(Y ): universal shape (non-linear effects in classical YM)

Not an observable though: spectrum is modified by final state interactions

Correlations in multi-particle production have more chances to survive
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Longitudinal expansion

Gluons liberated by the collision at t = 0 have transverse momenta k⊥ ∼ Qs
and longitudinal momenta |kz| ∼ x1P

+
1 or |kz| ∼ x2P

−
2

After a time t ∼ 1/Qs, they separate from each other along the z axis

particles which at time t are located at z have a velocity vz = z
t

Particles with different velocities vz ' kz/Qs can interact with each other
only at early times t . 1/Qs

In any slice of z, the distribution in the transverse plane is roughly isotropic
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Longitudinal expansion

Gluons liberated by the collision at t = 0 have transverse momenta k⊥ ∼ Qs
and longitudinal momenta |kz| ∼ x1P

+
1 or |kz| ∼ x2P

−
2

After a time t ∼ 1/Qs, they separate from each other along the z axis

particles which at time t are located at z have a velocity vz = z
t

Bjorken (1982): Particle distribution is independent of vz: boost-invariant

Natural in perturbative QCD (at least, in the classical approximation)
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Boost invariance

The classical field (& particle production at early times) is boost invariant

B it depends upon proper time τ but not upon space–time rapidity ηs

Introduction

Bookkeeping

Classical fields

● Diagrammatic expansion

● Retarded propagators

● Classical fields

● Gluon spectrum at LO

● Glasma

● Generating functional

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 32

Boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒ A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : Ai(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ Ai and β remain independent of η at all times

τ ≡
√
t2 − z2 =

√
2x+x−

ηs ≡
1

2
ln
t+ z

t− z =
1

2
ln
x+

x−

Under a boost with velocity β

ηs −→ ηs + tanhβ

For a particle produced at τ = 0 and undergoing free streaming (z = vzt),
ηs coincides with the momentum-space pseudo-rapidity η:

ηs =
1

2
ln

1 + vz
1− vz

=
1

2
ln
p+ pz
p− pz

= − ln tan
θ

2
= η
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Introduction

Bookkeeping
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● Diagrammatic expansion

● Retarded propagators
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● Gluon spectrum at LO
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● Generating functional
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Summary

CERN
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Boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒ A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : Ai(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ Ai and β remain independent of η at all times

τ ≡
√
t2 − z2 =

√
2x+x−

ηs ≡
1

2
ln
t+ z

t− z =
1

2
ln
x+

x−

y =
1

2
ln
p+

p−
=

1

2
ln

2(p+)2

p2
⊥
' ln

xP+

p⊥

For ultrarelativistic particles (E ' p), it also coincides with the usual
momentum-space rapidity y:

ηs =
1

2
ln

1 + vz
1− vz

=
1

2
ln
E + pz
E − pz

= y = ybeam − ln
1

x
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Multiplicity: the Feynman plateau

Bremsstrahlung =⇒ the gluon distribution xG(0)(x,Q2) at leading order
(the classical approximation) is independent of x, hence of y ' η ' ηs
B the x-dependence comes fully from the quantum evolution

-6 -4 -2 0 2 4 6
!

0

1

2

3

4

5

d
N

c
h
/d
!

/"
N

p
a

rt
/2
#

200 GeV 0-6%
200 GeV 35-40%
19.6 GeV 0-6%
19.6 GeV 35-40%

Au+Au

dNch/dη as a function of η (RHIC, PHOBOS): flat at |η| ≤ ηbeam
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Rapidity correlations

Consider pairs of particles in the final state with different rapidities

B hadrons which propagate at different angles w.r.t. the collision axis

Construct the 2-hadron correlation in η and p⊥ :

C(∆φ,∆η) ≡ dNpair

d2p1⊥dη1d2p2⊥dη2
− dN

d2p1⊥dη1

dN

d2p2⊥dη2

B mostly interested in the distribution in ∆η = η1− η2 and in ∆φ = φ1−φ2

This correlation is built at early stages: τ . 1/Qs ' 0.2 fm if Qs = 1GeV

B it teaches us about the initial conditions/glasma

To be correlated via the production mechanism, 2 partons must originate
from a same interaction region with transverse area ∼ 1/Q2

s

What would CGC / boost-invariant longitudinal expansion predict ?

B a Feynman plateau in ∆η, at least up to ∆η ∼ 1/ᾱ
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The Ridge in AA collisions

“The ridge”: di-hadron correlations long-ranged in ∆η & narrow in ∆φ

Abundantly observed in AA collisions at both RHIC and the LHC

A “trivial” peak around ∆η = 0 and ∆φ = 0

pairs of particles belonging to a same jet (and there are many !)
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < paT, p

b
T < 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grǎdiştei, Romania 11 / 1
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The Ridge in AA collisions

“The ridge”: di-hadron correlations long-ranged in ∆η & narrow in ∆φ

Abundantly observed in AA collisions at both RHIC and the LHC

A plateau in rapidity extending over an interval as large as ∆η = 8

boost invariance for particles created in the same interaction region
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < paT, p

b
T < 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality

CERN Summer School 2011 QCD in Heavy Ion Collisions Cheile Grǎdiştei, Romania 11 / 1
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The Ridge in AA collisions

“The ridge”: di-hadron correlations long-ranged in ∆η & narrow in ∆φ

Abundantly observed in AA collisions at both RHIC and the LHC

... and a surprize: for any ∆η, the correlation is peaked at ∆φ = 0

particles moving along very different directions w.r.t. the beam axis
preserve a common direction in the transverse plane

-2 -1 0 1 2
0

2
4

/

0

0.2

0.4

0.6 STAR Preliminary

vn from 2–particle correlations
〈

dNpairs

d∆φ

〉
∝ 1 + 2

∞∑

n=1

〈
v2n
〉

cos(n∆φ)

The reference phases Ψn drop out in the convolution !

φΔ

0

2

4
ηΔ

-4
-2

0
2

4

)
η

Δ,φ
Δ

C
(

1

1.02

1.04

 < 3 GeVb
T

,pa
T

2 < p

0-5%

ATLAS Preliminary

a)
-1bµ Ldt = 8 ∫

φΔ

0 2 4

)φ
Δ

C
(

0.99

1

1.01

1.02 |<5ηΔ2<|
<3 GeVb

T
, pa

T
2<p

ATLAS Preliminary
b)

0 5 10 15

n,
n

v

-510

-410

-310

-210 c) ATLAS Preliminary

|<5ηΔ2<|
<3 GeVb

T
, pa

T
2<p

-1bµ Ldt = 8 ∫

0 5 10 15

nv

-210

-110 d) ATLAS Preliminary

|<5ηΔ2<|
<3 GeVb

T
, pa

T
2<p

-1bµ Ldt = 8 ∫

n0 5 10 15
-50

0

50
-610×

n0 5 10 15
-5
0
5

-310×

ηΔ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n,
n

v

0

0.002

0.004

0.006

0.008

 < 3 GeVb
T

,pa
T

2 < p

0-5%

1,1v
2,2v
3,3v
4,4v
5,5v
6,6v

ATLAS Preliminary
-1bµ Ldt = 8 ∫

e)

ηΔ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

nv

0

0.05

0.1

2v
3v
4v
5v
6v

 < 3 GeVb
T

,pa
T

2 < p

0-5%

ATLAS Preliminary
-1bµ Ldt = 8 ∫

f)

Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < paT, p

b
T < 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality
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Radial flow

The nuclear disk has a finite radius and it is denser towards its center

there is also a radial flow: particles move away from the center
the radial velocity vr increases with the impact parameter b

Particles from a same interaction region with size ∼ 1/Qs feel the same
radial push

François Gelis

2-hadron correlations

Early stages
Gluon saturation

Color Glass Condensate

Factorization

Ridge in the CGC
Color flux tubes

Ridge in Au-Au collisions

Ridge in p-p collisions

Summary

20

2-hadron correlations at RHIC

Dumitru, FG, McLerran, Venugopalan (2008)
Dusling, Fernandez-Fraile, Venugopalan (2009)
Dusling, FG, Lappi, Venugopalan (2009)

• η-independent fields lead to long range correlations :

R

Q
S
-1

• Particles emitted by different flux tubes are not correlated
⊲ (RQs)

−2 sets the strength of the correlationthey would be produced isotropically in the absence of flow
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Radial flow

The nuclear disk has a finite radius and it is denser towards its center

there is also a radial flow: particles move away from the center
the radial velocity vr increases with the impact parameter b

Particles from a same interaction region with size ∼ 1/Qs feel the same
radial push

François Gelis

2-hadron correlations

Early stages
Gluon saturation

Color Glass Condensate

Factorization

Ridge in the CGC
Color flux tubes

Ridge in Au-Au collisions

Ridge in p-p collisions

Summary

20

2-hadron correlations at RHIC

Dumitru, FG, McLerran, Venugopalan (2008)
Dusling, Fernandez-Fraile, Venugopalan (2009)
Dusling, FG, Lappi, Venugopalan (2009)

• η-independent fields lead to long range correlations :

vr

• Particles emitted by different flux tubes are not correlated
⊲ (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ
A collimation in ∆ϕ is produced later by radial flow

the radial flow introduces a bias leading to collimation in ∆Φ
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The Ridge in pp and pA

LHC : quite surprisingly, a ridge is also observed in p+p and p+A events
with unusually high multiplicity
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Can flow develop in such small systems (∼ 1 fm) ?

If not ... this may reflect intrinsic momentum correlations at early times
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The Ridge in pp and pA

LHC : quite surprisingly, a ridge is also observed in p+p and p+A events
with unusually high multiplicity
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Angular correlations from saturation
Dilute-dense scattering (say, pA): saturation domains in the dense target

color fields are correlated within domains with transverse area ∼ 1/Q2
s

in each event, different domains are randomly oriented w.r.t. each other
this domain structure fluctuates from event to event

When 2 (or more) quarks from the projectile scatter off a same domain, they
will receive a similar kick provided they are in the same color state

δki = qg

∫
dx+F i− , |δk| ∼ Qs

q = R, B, G: quark color charge

correlation suppressed as 1/N2
c

... and by the number of domains
probed by the projectile

C(∆φ ' 0) ∝ 1

N2
c

1

Q2Sproj
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Glasma graphs for 2 quark production
(T. Lappi, B. Schenke, S. Schlichting and R. Venugopalan, arXiv: 1509.03499)

Independent scattering (“disconnected”) and correlations (“connected”)

one quark production

dN

d2k
= S(k) ' 1

πQ2
s

e−k
2
⊥/Q

2
s

two quark production

dN

d2kd2p
= S(k)S(p)

{
1 + C(k,p)

}

C(k,p) ' δ(2)(k − p) + δ(2)(k + p)

SprojN2
c

“ridge”: k ' p, or ∆φ ' 0

“elliptic flow”: k ' −p, or ∆φ ' π
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