The Electron-Ion Collider

Thomas Ullrich (BNL/Yale) EJC2018, October 11-12, 2018

The Electron-Ion Collider

The Electron-Ion Collider does not exist

The Electron-Ion Collider does not exist Yet!!

Over 800 people from 169 institutions and 29 countries are working hard to make it happen within the next decade.

I am one of them.

The Electron-Ion Collider on One Page

The Electron-Ion Collider will be a machine for learning about the secrets of gluons that binds the building blocks of visible matter in the universe.

The Electron-Ion Collider on One Page

The Electron-Ion Collider will be a machine for learning about the secrets of gluons that binds the building blocks of visible matter in the universe.

Tools:

- The world's first polarized electron-polarized proton collider
- The world's first electron-heavy ion collider
- Fine resolution inside proton down to 10⁻¹⁸ meters

The Electron-Ion Collider on One Page

The Electron-Ion Collider will be a machine for learning about the secrets of gluons that binds the building blocks of visible matter in the universe.

Tools:

- The world's first polarized electron-polarized proton collider
- The world's first electron-heavy ion collider
- Fine resolution inside proton down to 10⁻¹⁸ meters

- Counter rotating beams of electrons and protons/ions collide at an interaction point
- The probe (electron) is structure-less and scatters off a "target". The process is called Deep Inelastic Scattering.

Syllabus

- 1. Probing Matter
 - 1.1.Scattering Experiments
 - 1.2.Electron Scattering
- 2. Quark Models and QCD
 - 2.1.Static Quark Model
 - 2.2.QCD
 - 2.3.Gluons
- 3. Studying Matter at the Smallest Scale
 - 3.1.DIS & Kinematics
 - **3.2.Structure Functions**
 - **3.3.Parton Distribution Function**
- 4. The Frontiers of Our Ignorance
 - 4.1.Mass
 - 4.2.Cross-Sections
 - 4.3.Saturation
 - 4.4.Spin Puzzle

- 4.5.Imaging
- 4.6.Fragmentation
- 5. Landscape of QCD
- 6. Big question and what we need to answer them
- 7. Realization of an EIC
- 8. Detectors
- 9. Examples of Key Measurements at an EIC
 - 9.1. Spin of the proton
 - 9.2. Imaging
 - 9.3. Structure Functions and Nuclear PDFs in eA Collisions
 - 9.4. Dihadron Correlations
 - 9.5. Diffractive physics in eA
- 10.Closing comments and further reading

1. Probing Matter

Scattering of protons on protons is like colliding Swiss watches to find out how they are build.

R. Feynman

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

Thomson's Plum Pudding Model

Detail of gold foil (Thomson):

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

Light Microscope Wave length: 380-740 nm Resolution: > 200 nm

Light Microscope Wave length: 380-740 nm Resolution: > 200 nm Electron Microscope Wave length: 0.002 nm (100 keV) Resolution: > 0.2 nm

Light Microscope Wave length: 380-740 nm Resolution: > 200 nm Electron Microscope Wave length: 0.002 nm (100 keV) Resolution: > 0.2 nm

Note: Optical/electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beams interacting with the target, and the collection of the scattered radiation to create an image. They don't go deep.

Light Microscope Wave length: 380-740 nm Resolution: > 200 nm

Fixed Target Particle Accelerator Experiments Wave length: 0.01 fm (20 GeV) Resolution: ~ 0.1 fm

Electron Microscope Wave length: 0.002 nm (100 keV) Resolution: > 0.2 nm

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

Mott = Rutherford + Spin $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} |F(q^2)|^2$

$$q^2 = (\mathbf{p}_1 - \mathbf{p}_2)^2$$

Formfactor: $F(q^2)$ Fourier transform of charge distributions

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

Mott = Rutherford + Spin $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} |F(q^2)|^2$

$$q^2 = (\mathbf{p}_1 - \mathbf{p}_2)^2$$

Formfactor: $F(q^2)$ Fourier transform of charge distributions

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

The SLAC experiments in the 1960s established the gua w of particle physics.

Scattered electron is deflected by a known *B*-field and a fixed vertical angle:

determine E'

Spectrometer can rotate in the horizontal plane,

vary heta

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

2. Quarks Gluons and QCD

The proton is just 2 up quarks and 1 down quark, ...

"Static" Quark Model

q

Quarks: spin 1/2 fermions, color chargeM. Gell-Mann,
K. Nishijima (> 1964)Baryons:Image: Color chargeM. Gell-Mann,
K. Nishijima (> 1964)

Property Quark	d	u	8	С	b	t
Q – electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
I – isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
I_z – isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
$S-\mathrm{strangeness}$	0	0	-1	0	0	0
$C - {\rm charm}$	0	0	0	+1	0	0
$B-\mathrm{bottomness}$	0	0	0	0	-1	0
T - topness	0	0	0	0	0	+1

"Static" Quark Model

"Static" Quark Model

Quarks: spin 1/2 fermions, color charge

M. Gell-Mann, K. Nishiiima (> 1964)

For detailed properties of multi-quark systems the static (constituent) model has failed almost completely and given no predictions which have been verified by experiment.

How can a model be so successful in the quarkantiquark and three quark systems and fail for almost everything else?

What's missing?

 $\bullet o^+$

Quantum Chromodynamics (QCD)

Quantum Chromo Dynamics is the "nearly perfect" fundamental theory of the strong interactions F. Wilczek, hep-ph/9907340

• Three color charges: red, green and blue

Exchange particles (gluons) carry color charge and can self-interaction: QCD significantly harder to analyze than QED
Flux is confined: V(r) = -4/3 α_s/r + kr / long range ~ r

Long range aspect \Rightarrow quark confinement and existence of nucleons

Gluons: They Exist!

1979 Discovery of the Gluon Physics Letters B, 15 December 1980 Mark-J, Tasso, Pluto, Jade experiment at PETRA (e⁺e⁻ collider) at DESY ($\sqrt{s} = 13 - 32$ GeV)

•
$$e^+ e^- \rightarrow q \ \overline{q} \rightarrow 2\text{-jets}$$

Gluons: They Exist!

1979 Discovery of the Gluon Physics Letters B, 15 December 1980 Mark-J, Tasso, Pluto, Jade experiment at PETRA (e⁺e⁻ collider) at DESY ($\sqrt{s} = 13 - 32$ GeV)

Gluons: They Exist!

1979 Discovery of the Gluon Physics Letters B, 15 December 1980 Mark-J, Tasso, Pluto, Jade experiment at PETRA (e^+e^- collider) at DESY ($\sqrt{s} = 13 - 32$ GeV)

•
$$e^+ e^- \rightarrow q \ \overline{q} \ g \rightarrow 3$$
-jets

ELL IRT ON SYSTEM C rasso 27.4GEV JET 1, 1,2,5,6,9, AXIS JET3. 3,10,12;14 JET2, 4,7,8,13 EBERH 13.7 GEV SPHERICITY 2.816E-01 **EVENT 13177** TOTAL ENERGY Σ P. CHARGE 2.000 GEV JET I 4.3 GEV 7.4 G EV JET2 7.8 8.9 JET 3 11.1 4.1

J. Ellis, arXiv:1409.4232

Understanding QCD ?

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
- Asymptotic Freedom
 - ► $\alpha_s(Q^2) \sim 1 / \log(Q^2/\Lambda^2)$
 - in vacuum (Q ~ 1/R)
- Confinement
 - Free quarks not observed in nature
 - Quarks only in bound states

Understanding QCD ?

 $L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$

Gluons & their self-interaction

- Determine essential features of strong interactions
- Dominate structure of QCD vacuum (fluctuations in gluon fields)
- Responsible for > 98% of the visible mass in universe

Understanding QCD ?

- Gluons & their self-interaction
 - Determine essential features of strong interactions
 - Dominate structure of QCD vacuum (fluctuations in gluon fields)
 - Responsible for > 98% of the visible mass in universe

3. Studying Matter at the Smallest Scale

	10 ⁻²⁴ yn	iiiiiiiii 31 n yc	4 5 6 octometer	10 ⁻⁹	11111111111 7 8 7 nm	9 10 11 nanometer	 12 Valu	ue, sym	14 15 bol and nar	10000000000000000000000000000000000000	101 10 ²	111111111 181 dam bm	19 20 decameter	21	10 ¹² 10 ¹⁵	23 Tm	24 2 teramet	lilii 25i ter
	10 ⁻¹⁸ ai 10 ⁻¹⁵ fr 10 ⁻¹² pi	am attomet fm femtom pm picomet	tometer emtometer cometer	10 ⁻³ 10 ⁻³ 10 ⁻³	³ mm ² cm ¹ dm	millimeter centimeter decimeter	SI n Me	nultiple etricPi	of meter (r	n) M	10 ³ 10 ⁶ 10 ⁹	km Mm Gm	kilometer megameter gigameter		10 ¹⁸ 10 ²¹ 10 ²⁴	Em Zm Ym	examete zettame yottame	er eter eter
			In	t	err	natio	19	15	Syst	e	m	R	uler					
	Area: Volume:	cm ² ha L	sq. centimeter hectare liter	= = =	100 mm ² 1 hm ² 1 dm ³	square millimeter square hectomet cubic decimeter	rs er =	10 0	000 m ² square	meters	5	Int	errelations	hip: ater	fills	one d	cubic	
	Mass:	mL m ³ kg	milliliter cubic meter kilogram	= = =	1 cm ³ 1 000 dm 1 000 g	cubic centimeter cubic decimeters grams	=	1 000 L liters 1 000 000 µg or mcg micrograms 1 000 kg				decimeter and weighs one kilogram. So, one thousand liters of water fill						n.
		g t	gram ton	=	1 000 mg 1 Mg	milligrams megagram	=				grams	one cubic meter and weigh			one to	n.		

Deep Inelastic Scattering (DIS)

$$s = (k+p)^2 \approx 4E_e E_p$$

 square of center-ofmass energy of electron-hadron system

Deep Inelastic Scattering (DIS)

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$\approx 4EE' \sin^{2}\left(\frac{\theta}{2}\right)$$

- 4-momentum transfer from scattered electron
- invariant mass sq. of γ^*
- "Resolution" power
- Virtuality
 - real photon Q = 0

$$y = \frac{pq}{pk} = 1 - \frac{E'_e}{E_e} \cos^2\left(\frac{\theta'_e}{2}\right)$$

- Inelasticity
- Fraction of electron's energy lost in nucleon restframe
- 0 < y < 1

$$x = \frac{Q^2}{2pq}$$

• Bjorken-x

 x is fraction of the nucleon's momentum carried by the struck quark

- x: momentum fraction of partonQ²: resolution power
- y: inelasticity
- s: center-of-mass energy sq.

$$Q^2 \approx s \cdot x \cdot y$$

Deep $(Q^2 \gg m_p^2)$ Inelastic $(W^2 \gg m_p^2)$ Scattering = DIS

- x: momentum fraction of partonQ²: resolution power
- y: inelasticity
- s: center-of-mass energy sq.

$$Q^2 \approx s \cdot x \cdot y$$

Deep $(Q^2 \gg m_p^2)$ Inelastic $(W^2 \gg m_p^2)$ Scattering = DIS

N.B.: This picture was developed in the "infinite momentum frame" (IMF). That works nicely when one assume massless quarks and gluons (partons). Despite all this it is also used for example for massive charm quarks. Some care has to be taken and x needs to be "adjusted".

The x-Q² Plane

- Low-x reach requires large \sqrt{s}
- Large-Q² reach requires large \sqrt{s}
- *y* at colliders typically limited to approx. 0.01 < y < 0.95

Structure Functions

Inclusive e+p collisions:

(only scattered electron is measured, rest ignored)

F_2 and F_L are key in understanding the structure of hadrons

N.B.: At very high energies a 3rd structure function comes into play: F₃ Ignored here and in the rest

Structure Functions

Inclusive e+p collisions:

(only scattered electron is measured, rest ignored)

$$\frac{d^{2}\sigma^{ep \rightarrow eX}}{dxdQ^{2}} = \frac{4\pi\alpha_{e.m.}^{2}}{xQ^{4}} \left[\left(1 - y + \frac{y^{2}}{2} \right) F_{2}(x,Q^{2}) - \frac{y^{2}}{2} F_{L}(x,Q^{2}) \right]$$
quark+anti-quark
momentum distributions
gluon momentum
distribution

F2 and FL are key in understanding the structure of hadrons

N.B.: At very high energies a 3rd structure function comes into play: F₃ Ignored here and in the rest

More Practical: Reduced Cross-Section

Inclusive Cross-Section:

$$\frac{d^2 \sigma^{eA \to eX}}{dx dQ^2} = \frac{4\pi \alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

Reduced Cross-Section:

$$\sigma_r = \left(\frac{d^2\sigma}{dxdQ^2}\right) \frac{xQ^4}{2\pi\alpha^2 [1+(1-y)^2]} = F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2} F_L(x,Q^2)$$

$$\sigma_r(x,Q^2) = F_2^A(x,Q^2) - \frac{y^2}{Y^+} F_L^A(x,Q^2)$$

More Practical: Reduced Cross-Section

Inclusive Cross-Section:

$$\frac{d^2 \sigma^{eA \to eX}}{dx dQ^2} = \frac{4\pi \alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

Reduced Cross-Section:

$$\sigma_r = \left(\frac{d^2\sigma}{dxdQ^2}\right) \frac{xQ^4}{2\pi\alpha^2 [1+(1-y)^2]} = F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2} F_L(x,Q^2)$$

$$\sigma_r(x,Q^2) = F_2^A(x,Q^2) - \frac{y^2}{Y^+} F_L^A(x,Q^2)$$

Rosenbluth Separation:

- Recall Q² = x y s
- Measure at different \sqrt{s}
- Plot σ_{red} versus y2/Y⁺ for fixed x, Q²
- F₂ is σ_{red} at y2/Y⁺ = 0
- F_L = Slope of y2/Y⁺

Studying Matter at the Smallest Scales

ep/eA Collider Experiments Wave Length: 0.0001 fm (10 GeV + 100 GeV) Resolution: ~ 0.01-0.001 fm

Bjorken Scaling: $F_2(x, Q^2) \rightarrow F_2(x)$ virtual photon interacts with a single essentially free quark

Point-like particles cannot be further resolved.

Their measurement does not depend on wavelength, hence Q² independence.

Structure functions allows us to extract the quark $q(x,Q^2)$ and gluon $g(x,Q^2)$ distributions (PDFs). In LO: Probability to find parton with x, Q² in proton

PDF: Connecting experiment (e.g. pp) with theory

Structure functions allows us to extract the quark $q(x,Q^2)$ and gluon $g(x,Q^2)$ distributions (PDFs). In LO: Probability to find parton with x, Q² in proton

What is Needed:

- Good data
 - Best: F₂ (ep), jets, Drell-Yan (pp)
 - Bad: Hadrons
- pQCD Calculation of the processes
 LO, NLO, NNLO
- QCD Evolution Equations
 - DGLAP: Evolution in Q² (small to large) at fixed x (integrodifferential equations)
 - BFKL: Evolution in x at fixed Q²

Figure 1.1: The processes related to the lowest order QCD splitting functions. Each splitting function $P_{p'p}(x/z)$ gives the probability that a parton of type p converts into a parton of type p', carrying fraction x/z of the momentum of parton p

- Quarks: q_i(x,Q²) from F₂ (or reduced cross-section)
- Gluons: g(x,Q²) through scaling violation: dF²/dlnQ²

- Quarks: q_i(x,Q²) from F₂ (or reduced cross-section)
- Gluons: g(x,Q²) through scaling violation: dF²/dlnQ²

pQC *F*₂
 *dF*₂/*dlnQ*² + DGLAP Evolution $f(x, Q_1^2) \rightarrow f(x, Q_2^2)$

- Quarks: q_i(x,Q²) from F₂ (or reduced cross-section)
- Gluons: g(x,Q²) through scaling violation: dF²/dlnQ²

- Quarks: q_i(x,Q²) from F₂ (or reduced cross-section)
- Gluons: g(x,Q²) through scaling violation: dF²/dlnQ²

Proton is almost entirely glue for x<0.1

Here goes the naive picture that protons are made of 3 quarks (recall static quark model)

Hera's Impact

Hera's Impact

PDFs: Much Progress, Still Shortcomings

CTEQ14: a modern proton PDF

- Large uncertainties at x=10⁻³ and 10⁻⁴ at the small Q² although high quality data exist.
- The precision of low Q² data is ineffectual due to the lack of data at the larger Q² (Evolution from low to high Q²)

Uncertainties from PDF dominate many "BSM" searches

Strong Evidence that QCD is the Correct Theory

Strong Evidence that QCD is the Correct Theory

4. The Frontiers of Our Ignorance

... that motivate an Electron-Ion Collider

The Mass Puzzle

The Higgs is responsible for quark masses $\sim 2\%$ of the proton mass.

Gluons are massless...yet their dynamics are responsible for (nearly all) the mass of visible matter. We do not know how?

Scattering in the Strong Interactions

Perturbative QCD:

- Describes only a small part of the total cross-section
- Lattice QCD:
 - First principles treatment of static properties of QCD: masses, moments, p thermodynamics
 - Very challenging for dynamical processes and very limited utility in describing scattering

Scattering in the Strong Interactions

Perturbative QCD:

- Describes only a small part of the total cross-section
- Lattice QCD:
 - First principles treatment of static properties of QCD: masses, moments, p thermodynamics
 - Very challenging for dynamical processes and very limited utility in describing scattering

Instead \Rightarrow Effective theories:

• How do quark and gluon degrees organize themselves to describe the bulk of the cross-section?

In QCD, the proton is made up of quanta that fluctuate in and out of existence

- Boosted proton:
 - Fluctuations time dilated on strong interaction time scales
 - Long lived gluons can radiate further small x gluons...
 - Explosion of gluon density

A Look Inside the Boosted Proton

A Look Inside the Boosted Proton

Issues with our Current Understanding

Linear DGLAP Evolution Scheme

- built in high energy "catastrophe"
- G rapid rise violates unitary bound

Linear BFKL Evolution Scheme

- Density along with σ grows as a power of energy
- Can densities & σ rise forever?
- Black disk limit: $\sigma_{total} \le 2 \pi R^2$

Something's wrong: Gluon density is growing too fast ⇒ Must saturate (gluons recombine) What's the underlying dynamics? Need New Approach

Gluon Saturation

In transverse plane: nucleus/ nucleon densely packed with gluons

McLerran-Venugopalan Model:

- Weak coupling description of the wave function
- Gluon field A_µ~1/g ⇒ gluon fields are strong classical fields!
- Most gluons k_T ~ Q_S

New Approach: Non-Linear Evolution:

- At very high energy: recombination compensates gluon splitting
- Cross sections reach unitarity limit \Rightarrow saturation
- Needs new evolution equations (JIMWLK/BK)
- Saturation regime characterized by Q_s(x,A)

00000

BFKL:

BK adds:

Gluon Saturation

In transverse plane: nucleus/ nucleon densely packed with gluons

McLerran-Venugopalan Model:

- Weak coupling description of the wave function
- Gluon field A_µ~1/g ⇒ gluon fields are strong classical fields!
- Most gluons k_T ~ Q_S

ln x

New Approach: Non-Linear Evolution:

- At very high energy: recombination compensates gluon splitting
- Cross sections reach unitarity limit \Rightarrow saturation
- Needs new evolution equations (JIMWLK/BK)
- Saturation regime characterized by $Q_s(x,A)$

Color Glass Condensate (CGC)

- The saturated regime is called a Color Glass Condensate
 - Color" in the name refers to the color charge of quarks and gluons
 - "Glass" is borrowed from the term for silica and other materials that are disordered and act like solids on short time scales but liquids on long time scales. In the CGC the gluons themselves are disordered and do not change their positions rapidly because of time dilation.
 - Condensate" means that the gluons have a very high density (there is some speculation if the CGC is a BEC)
- The effective theory that describes the CGC is also called the CGC (just to confuse you)
- The CGC evolution equation is called JIMWLK and it's mean field equivalent BK (replacing BFKL)

A Look Inside the "Saturated" Proton

A Look Inside the "Saturated" Proton

A Look Inside the "Saturated" Proton

N.B.: Important Dual Description of DIS

- Bjorken frame: Partonic picture of a hadron is manifest. Saturation shows up as a limit on the occupation number of quarks and gluons.
- Dipole frame: Partonic picture is no longer manifest. Saturation appears as the unitarity limit (black disk) for scattering. Convenient to resum the multiple gluon interactions.

Dipole frame commonly used to describe diffractive processes [A. Mueller, 01; Parton Saturation-An Overview]

N.B.: Important Dual Description of DIS

hadron is manifest. Saturation shows up as a limit on the occupation number of quarks and gluons.

 Dipole frame: Partonic picture is no longer manifest. Saturation appears as the unitarity limit (black disk) for scattering. Convenient to resum the multiple gluon interactions.

Dipole frame commonly used to describe diffractive processes [A. Mueller, 01; Parton Saturation-An Overview]

Nuclear Oomph

Scattering of electrons off nuclei: Probes interact over distances $L \sim (2m_N x)^{-1}$ For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon Probe interacts *coherently* with all nucleons

$$Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R_A^2}$$
 HERA: $xG \sim \frac{1}{x^{0.3}}$ A dependence: $xG_A \sim A$

"Expected" Nuclear Enhancement Factor (Pocket Formula):

$$(Q_s^A)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Enhancement of Saturation Scale

Enhancement of Q_S with A: saturation regime reached at significantly lower energy in nuclei (and lower cost)

Some Interesting Ideas

- Conjecture I:
 - at very low-x all hadrons Q_S(x) becomes equal for nucleons, nuclei, mesons, baryons …
 - maybe even for photons (more later)
 - truly universal regime
- Conjecture II:
 - ▶ as $Q_s(x)$ grows towards small-x, Q_s becomes the largest scale, hence $α_s(Q^2) → α_s(Q_s^2)$
 - end of the line for α_s (as long as Q < Q_s)?

Physics at extreme low-x appears to be a wonderland. Experimentally we might not get there in our life time.

Key Topic in ep: Proton Spin Puzzle

What are the appropriate degrees of freedom in QCD that would explain "spin" of a proton?

- After 20 years effort
 - Quarks (valence and sea): ~30%
 of proton spin in limited range
 - Gluons (latest RHIC data): ~20% of proton spin in limited range
 - Where is the rest?

It is more than the number 1/2! It is the interplay between the intrinsic properties and interactions of quarks and gluons

Key Topic in ep: Proton Spin Puzzle

What are the appropriate degrees of freedom in QCD that would explain "spin" of a proton?

- After 20 years effort
 - Quarks (valence and sea): ~30% of proton spin in limited range
 - Gluons (latest RHIC data): ~20% of proton spin in limited range
 - Where is the rest?

It is more than the number 1/2! It is the interplay between the intrinsic properties and interactions of quarks and gluons

Jaffe-Manohar sum rule:

$$\frac{1}{2} = \frac{1}{2} \int_0^1 \mathrm{d}x \Delta \Sigma(x, Q^2) + \int_0^1 \mathrm{d}x \Delta g(x, Q^2) + \sum_q L_q + L_g$$

What Does a Proton Look Like?

- In transverse momentum?
- In transverse space?
- How are these distributions correlated with overall nucleon properties, such as spin direction?

What Does a Proton Look Like?

- In transverse momentum?
- In transverse space?
- How are these distributions correlated with overall nucleon properties, such as spin direction?

3D Imaging with EIC

What Does a Proton Look Like?

- Transverse Momentum Distributions (TMDs):
 - 2D+1 picture in momentum space (k_T)
- Generalized Parton Distributions (GPDs):
 - > 2D+1 picture in coordinate space (b_T)

Fragmentation

Color propagation and neutralization

- Fundamental QCD Processes:
 - Partonic elastic scattering
 - In Nucleus: Gluon bremsstrahlung in vacuum and in medium (E-loss)
 - Color neutralization
 - Hadron formation

dynamic confinement

- Process not understood from first principles (QCD)
- Parametrization: Fragmentation Functions
- Nuclei as space-time analyzer allows to dissect process

QCD coupling is large, the fields are nonlinear, and the physics is nonperturbative.

The coupling becomes weak due to asymptotic freedom, and perturbative QCD describes well the interactions of quarks and gluons.

At large Q², as one moves towards higher parton density, manybody correlations between quarks and gluons become increasingly important.

The feature of weak coupling is key because it allows, for the first time, systematic computations of the manybody dynamics of quarks and gluons in an intrinsically nonlinear regime of QCD.

Total cross-sections in high energy scattering are dominated by the physics of small x and low Q². The least understood region

6. Big Question and what we need to answer them

The Essential Mystery

There is an elegance and simplicity to nature's strongest force we do not understand

- (Nearly) all visible matter is made up of quarks and gluons
- But quarks and gluons are not visible
- All strongly interacting matter, their properties and dynamics are an *emergent* consequence of many-body quark-gluon dynamics.

The Essential Mystery

There is an elegance and simplicity to nature's strongest force we do not understand

- (Nearly) all visible matter is made up of quarks and gluons
- But quarks and gluons are not visible
- All strongly interacting matter, their properties and dynamics are an *emergent* consequence of many-body quark-gluon dynamics.

Understanding the origins of matter demands we develop a deep and varied knowledge of this emergent dynamics

eon?

Driving Fundamental Questions in e+p

Proton serves as:

Object of

- How do quark and gluon dynamics generate the proton spin?
- What is the role of the orbital motion of sea quarks and gluons in building up the nucleon spin?
- How are the sea quarks and gluons distributed in space and transverse momentum inside the nucleon?
- How are these distributions correlated with overall nucleon properties, such as spin direction?

Driving Fundamental Questions in e+A

Nucleus serves as:

Object of Interest

Amplifier

Analyzer

- What is the fundamental quark-gluon structure of atomic nuclei?
- Can we experimentally find and explore a novel universal regime of strongly correlated QCD dynamics?
- What is the role of saturated strong gluon fields, and what are the degrees of freedom in this strongly interacting regime?
- Can the nuclear color filter provide novel insight into propagation, attenuation and hadronization of colored probes?

Requirements: What is Needed?

- Access to wide range in x and Q²
 - → Large center-of-mass energy (\sqrt{s}) range
- Access to spin structure of nucleons and nuclei
- Access to 3D spatial and momentum structure of nucleon
 - Polarized electron and hadron beams
- Accessing the highest gluon densities $(Q_S^2 \sim A^{1/3})$
 - ➡ Nuclear beams, the heavier the better (up to U)
- Essential for mapping 3D structure of nucleons and nuclei access to rare probes
- Studying observables as a fat of x, Q², A, etc.
 - ➡ High luminosity (100x HERA)

7. Realization of an EIC

Reality Check

Designing a dream machine is easy but

- It has to be fundable
- The technology has to be available

Find the parameters that do the job (here EIC White Paper):

- Highly polarized (70%) e- and p beams
- Ion beams from D to U
- Variable center-of-mass energies from $\sqrt{s}=20-140$ GeV
- High collision luminosity 10³³⁻³⁴ cm⁻²s⁻¹ (HERA ~ 10³¹)
- Possibilities of having more than one interaction region
Electron-Ion Collider Initiatives

	Past			Future		
	HERA@DESY	LHeC@CERN	HIAF@CAS	ENC@GSI	JLEIC@JLab	eRHIC@BNL
√s (GeV)	320	800-1300	12-65	14	20-64	32-140
Proton x _{min}	1×10-5	5×10 ⁻⁷	3×10-4	5×10 ⁻³	3×10-4	5×10⁻⁵
lons	р	p Pb	p U	р Са	p Pb	p U
L (cm ⁻² s ⁻¹)	2×10 ³¹	~10 ³⁴	~10 ³²⁻³⁵	~10 ³²	~10 ³³⁻³⁵	~10 ³³⁻³⁴
IRs	2	1	1	1	2+	2+
Year	1992-2007	post ALICE	> 2020	Fair Upgrade	post 12 GeV	post RHIC

High-Energy Physics

Nuclear Physics

- World-wide interest in EIC
- All future collider include e+A in their planning

EIC: Kinematic Range

- EIC cannot compete with e+p at HERA (\sqrt{s} = 318 GeV)
- EIC's strength is polarized e⁺+p⁺ and e+A collisions
- Here the kinematic reach extends substantially compared to past (fixed target) coverage
 - ▶ Q²×20, *x*/20 for e+A
 - Q²×20, x/100 for polarized e↑+p↑

US Electron Collider: eRHIC Options

eRHIC (BNL)

- Add e Rings to RHIC facility: Ring-Ring (alt. recirculating Linac-Ring)
- Electrons up to 18 GeV
- Protons up to 275 GeV
- ✓s=30-140 √(Z/A) GeV
- L ≈ 1×10³⁴ cm⁻²s⁻¹ at √s=105 GeV

2 IRs

eRHIC: pre-CDR in preparation

US Electron Collider: JLEIC Option

JLEIC (JLab)

- Figure-8 Ring-Ring Collider, use of CEBAF as injector
- Electrons 3-10 GeV
- Protons 20-100 GeV
- e+A up to √s=40 GeV/u
- e+p up to \sqrt{s} = 64 GeV
- L ≈ 2×10³⁴ cm⁻² s⁻¹ at √s=45 GeV

arXiv:1504.07961

Status of US Based EIC?

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

2015:

US Nuclear Physics Long Range Plan: "We recommend a high-energy highluminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB."

2018: National Academy EIC Review "An EIC—with its exceptionally powerful probing capability—would uniquely address profound, fundamental questions about nucleons (neutrons and protons) and their assembly into nuclei of atoms ..."

Department of Energy Process

DOE's Order 413.3B outlines a series of staged project approvals, referred to as a "Critical Decision (CD)"

- CD-0 Approve Mission Need
- CD-1 Approve Alternative Selection and Cost Range
- CD-2 Approve Performance Baseline
- CD-3 Approve Start of Construction
- CD-4 Approve Start of Operations or Project Completion

- At the very beginning!
 - CD-0 expected this calendar year (2018)
 - Important step since the EIC is becoming a "project" and not just a cool idea

At the very beginning!

- CD-0 expected this calendar year (2018)
 - Important step since the EIC is becoming a "project" and not just a cool idea
- Site Selection
 - somewhere between CD-0 and CD-1
 - DOE has not hinted how this process will look like

At the very beginning!

- CD-0 expected this calendar year (2018)
 - Important step since the EIC is becoming a "project" and not just a cool idea
- Site Selection
 - somewhere between CD-0 and CD-1
 - DOE has not hinted how this process will look like

We hope it will be more like this

At the very beginning!

- CD-0 expected this calendar year (2018)
 - Important step since the EIC is becoming a "project" and not just a cool idea
- Site Selection
 - somewhere between CD-0 and CD-1
 - DOE has not hinted how this process will look like

We hope it will be more like this

rather than this

8. Detectors

Setting the Stage: EIC Detector(s)

- Consensus within the EIC community:
 - A least 1 general purpose detector
 - Needs for a second detector majority favors a second general purpose detector instead of more specialized detector
 - Arguments for 2 detectors similar as for every collider
 - The 2 detectors should be complementary (different strengths) success of combined HERA data is good example
- Both machine designs include at least 2 IRs

Magnet

- Originally many solutions discussed (Dipole, Toroid, ...)
- Focus now on Solenoidal Magnet
- Compact EIC detector requires large fields: B ~ 3T
- Available magnet: BaBar B = 1.5 T
- No ongoing R&D

Polarization/Luminosity

- Electron Polarization: Compton Process (need 1% or better)
- Proton/Light Ion Polarization: experience from RHIC but tighter requirements at EIC
- Luminosity Measurements

Barrel

- Si-Vertex tracker: low X/X₀, resolve charm vertices \Rightarrow MAPS,
- Main tracker: p, dE/dx \Rightarrow TPC, Si-Tracker, GEM, MMG, µRWELL, ...
- Particle ID (PID): $p < 10 \text{ GeV} \Rightarrow \text{DIRC}$, EMCal, ...
- EM Calorimetry: e/h, γ , π^0 , ...
- Hadron Calorimetry: jets (neutral component) \Rightarrow optional
- Muon Detector: vector mesons ⇒ optional

Forward

- Si-Vertex tracker: resolve charm vertices ⇒ MAPS,
- Tracker: $p \Rightarrow GEM$, MMG, μ Rwell, ...
- Particle ID (PID): $p < 50 \text{ GeV} \Rightarrow \text{RICH}, \text{TRD}, \dots$
- EM Calorimetry: E, e/h, γ , π 0, ...
- ► Hadron Calorimetry: E, e/h, jets ⇒ high resolution needed

- Very Forward
 - Nuclear Breakup/Fragments: ZDC, Roman Pots, Forward proton detector
 - Proton p_T, t measurement: Roman Pots

Backward

- Si-Vertex tracker
- Tracker: $p \Rightarrow GEM$, MMG, μ Rwell, ...
- Particle ID (PID): \Rightarrow RICH, EMCal
- ► EM Calorimetry: E, e/h ⇒ high resolution needed

Access to low Q² region: Low Q2 tracker

Challenges

Big View:

- Hermetic detector, low mass inner tracking
- good PID (e and π/K/p)
 - extreme requirements in forward region
- Good calorimetry
 - HCAL: extreme req. in forward region
 - EMCAL: extreme req. backwards region
- Moderate radiation hardness requirements, low pile-up, low multiplicity

Challenges:

- PID
- ► EMCal at 2%/√E

R&D Driver: Requirements

n	Nomenclature		Tracking		Electrons		π/K/p PID		HCAL	Muons		
	Nomenciature			Resolution	Allowed X/X ₀	Si-Vertex	Resolution σ_E/E	PID	p-Range (GeV/c)	Separation	Resolution σ_E/E	
-6.9 — -5.8			low-Q ² tagger	$\begin{array}{l} \delta\theta/\theta < 1.5\%; 10^{.6} < Q^2 \\ < 10^{.2} \; GeV^2 \end{array}$								
	↓ p/A	Auxiliary										
-4.5 — -4.0		Detectors	Instrumentation to separate charged particles from photons									
-4.0 — -3.5							2%/√E					
-3.5 — -3.0		Central Detector	Backwards Detectors	$\sigma_p/p \sim 0.1\% \times p+2.0\%$	~5% or less	TBD						
-3.0 — -2.5											~50%/√E	
-2.5 — -2.0				$\sigma_p/p \sim 0.05\% xp+1.0\%$					≤ 7 GeV/c ession to			
-2.0 — -1.5												
-1.5 — -1.0							7%/√E	up to				
-1.0 — -0.5			Barrel	σ _p /p ~ 0.05%×p+0.5%		σ _{xyz} ~ 20 μm, d ₀ (z) ~ d ₀ (rφ) ~ 20/p _T GeV μm + 5 μm	(10-12)%/√E	1:104	_			
-0.5 — 0.0									≤ 5 GeV/c	≥ 3σ	TBD	
0.0 — 0.5												IBD
0.5 — 1.0												
1.0 — 1.5			Forward Detectors	σ _p /p ~ 0.05%×p+1.0%		TBD			≤ 8 GeV/c		~50%/√E	
1.5 — 2.0												
2.0 — 2.5												
2.5 — 3.0			$\sigma_p/p \sim 0.1\% \times p+2.0\%$					≤ 20 GeV/c ≤ 45 GeV/c	_			
3.0 - 3.5												
3.5 - 4.0		Instrumentation to										
4.0 - 4.5			particles from photons									
	1e	Auxiliary Detectors										
> 6.2		201001010	Proton Spectrometer	$\begin{array}{l} \sigma_{intrinsic}(lt)/ltl < 1\%;\\ Acceptance: 0.2 < p_T < \\ 1.2 \ GeV/c \end{array}$								

From R&D Handbook (later more)

Generic EIC Detector Concepts

Brookhaven concept: BEAST

Jefferson lab concept: JLEIC

$sPhenix \rightarrow ePhenix$

Argonne concept: TOPSiDE

Generic EIC Detector Concepts

Brookhaven concept: BEAST

sPhenix -

Jefferson lab concept: JLEIC

Current Concepts

- Important as test bed for detector R&D
- Each attempt to match requirements
- Nothing is cast in stone
- Will evolve as new concepts are developed

Beam pipe

cept: TOPSiDE

BEAST (Brookhaven eA Solenoidal Tracker)

-3.5 < η < 3.5: Tracking & e/m Calorimetry (hermetic coverage)

JLEIC Concept Detector

- Similar concept to BEAST
 - Vertex detector
 - Central tracker (all options – TPC considered)
 - Forward tracking
 - Cerenkov detectors
 - Electromagnetic calorimeters
 - Hadron calorimeter in the forward and barrel region (new), possible in rear direction
 - Muon chambers considered

