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• Discuss measurements sensitive to or related to multi-parton interactions

– Available observables (soft and hard)

– Definition and measurement procedure 

(including selected details how to reproduce them)

– Results and interpretation

– Influence of MPI
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• Multiplicity 
– JFGO, PhD thesis, link

• Underlying Event 
– Sara Vallero, PhD thesis, link

• Uncorrelated seeds / minijets
– In pp: Eva Sicking, PhD thesis, link, 

– In p-Pb: Emilia Leogrande, PhD thesis, link

• Hard Probes vs. Multiplicity
– Javier Blanco, PhD thesis, link

• Concepts of multiplicity biases
– Phys. Rev. C 91 (2015) 064905, arXiv link

• Multiple Parton Interactions at the LHC, ISBN: 978-981-3227-75-0
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• Multiplicity distribution P(Nch) = probability that 

event has certain (charged) multiplicity

– Within pT and h phase space  (due to detectors)

• Very sensitive to MPI
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Multiplicity Distributions
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Fixed target collisions

 cms: 10-24 GeV

Find the math here

1972
P(Nch) vs. Nch

http://mtdevans.com/projects/physics-problems/fixed-target-vs-collider-experiments-with-discussion/


• <Nch> grows almost linearly with #PI

• Multiplicity distribution strongly depends on 

number of PI

– Larger values not reached with few PI

– Small values not reached with many PI

• Multiplicity distribution, in particular its tail, has 

large influence on MPI related parameters in 

MC tuning

• Unfortunately, not possible to measure P(Nch) 

as a function of #PI
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• Average multiplicities at LHC energies 

– Faster increase than expected by MCs

• Indication for higher MPI activity

• MCs retuned affecting MPI

– p matter distribution 

 affects impact 

parameter distribution

– pT,min (s)
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Average Multiplicities
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dNch/dh vs. h

• Inelastic collisions

– Non-diffractive and diffractive

– Single and double diffractive, …

– Some not measured

• Traditional classes: inelastic (“INEL”) 

and non-single diffractive (NSD)

• Large uncertainties in corrections

• Avoided by particle-level definitions

– At least N particles within phase space

• Examples

– ALICE INEL>0: Nch>=1 in |h| < 1

– ATLAS: Nch>=1 in |h| < 2.5 and pT > 0.5 GeV/c

– ATLAS: Nch>=2 in |h| < 2.5 and pT > 0.1 GeV/c
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Event Classes
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• Event types have different topologies

• Non triggered fraction MC dependent

• Particle-level definition reduces not 

triggered fraction

– Reduces overall uncertainties

9

Event Classes & Triggers
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• Tail widens with s

• Up to 150 particles in |h| < 1.5

• Agreement among experiments 

over 5 orders of magnitude
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• Even state of the art MCs have a hard time 

for an exact description

– Deviations of 20…50% easily occur

• Recap: tail is sensitive to large number of PI
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… and MCs
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• Published multiplicity distribution != raw measurement

– Usually causes lots of stress 

• Event-level corrections

– Events skipped by 

trigger or vertex reconstruction

– Migration in and out 

of desired event class

• Track-level corrections

– Efficiency, secondaries

• Resolution

– Track level (pT) and event level (Nch) 

 unfolding
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Corrections
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How to measure

Unfolding is an important concept, I use the example 

of the multiplicity distribution to introduce it here

Example for ALICE SPD (TPC)



• Unfolding is 
– the estimation of a probability distribution for which (usually) 

no parametric form is available

– where the data are subject to additional random fluctuations 
due to limited resolution

• Sometimes discussed as inverse problem, sometimes 
called deconvolution and unsmearing

• Unfolding
– reverts bin flow (i.e. tries to recover information which you 

don‘t have)

– assigns events or tracks in a reconstructed bin to their 
originating (true) bin on a statistical basis

probability distributions are transformed

no information about the origin of a single event is obtained
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Unfolding
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• Measurement = folding with detector response

• Almost all practical purposes
– Binning, discrete case  matrix / vector notation

• Unfolding
– Inversion of the folding by the detector

– Discrete: Inversion of a matrix

• T (M) is the expectation value of the true (measured) distribution

• One measurement provides M* for which E[M*] = M

• Based on M* we want to find an estimator T* for T
– Should be unbiased, i.e. b = E[T*] – T = 0

– Smallest variance as possible

• NB: this formulation neglects background 
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Unfolding - Mathematically
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• Many analyses correct bin by bin
– Choose binning appropriate for analysis

– One correction factor per bin

• Correct when
– there is only a negligible amount of bin migration

– distributions are not steeply falling

• Incorrect when
– there is significant bin migration

– distributions fall steeply

– MC does not describe the data

• Example
– Bin by bin correction factor from 

Pythia to correct Phojet sample
 Significant deviation
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Why is it needed?
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• Easiest approach: matrix inversion

• If bin size smaller than resolution

– Large off diagonal elements in R-1

– Negative correlations between neighboring bins

• Inverted solution 

– Suffers from large (non-physical) fluctuations

– Can be understood  (potential) fine structure cannot be resolved by detector
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Why is it difficult?
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• A true distribution with a fine structure would also 
appear smooth in the detector

• Solution found by matrix inversion
– Unbiased b = E[T*] – T = 0

– Huge variance, but smallest variance of all unbiased estimators

 Solutions with smaller variance will have a bias

• Need to trade variance against bias 
 unfolding methods discussed today

17

Why is it difficult? (2)
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• Basic equation

• Diagonalise response matrix

– D diagonal with eigenvalues of R, largest first

• Transformation matrix U with

• Rewrite

• Transformation b  c (folding) became multiplication with eigenvalues
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Regularized Unfolding
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• Regularization = select which coefficients to keep

• How to select coefficients in unfolding?
– c2 minimization with regularization (acts like a smooth cut-off)

– Iterative Bayesian unfolding with limited number of iterations

• Small eigenvalues converge slower than larger ones!
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Regularized Unfolding
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• Find the spectrum by minimizing a c2 function

“Typical” c2 term regularization term

• R(T*) only depends on unfolded guess T*

• Weight b balances the two terms

• Without regularization term, same result as found by matrix inversion
– One can show that the solutions are equivalent
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c2-Minimization with Regularization
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• Simple functional form which smoothens 
result
– Don’t add information through this term

= Don’t impose how it should look like

– E.g. if you look for an exponential, don’t 
regularize with an exponential

• Weight parameter b needs to be tuned
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Regularization
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• Conceptually, instead of choosing the solution with the smallest c2

– one accepts a higher c2

– so that the result is smooth
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c2-Minimization with Regularization (2)
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• Residuals assess if unfolded distribution reproduces measurement

– First part of the c2 function ( normalized residuals)

– Should be a Gaussian with s of 1

• c2/ndf helps to choose b
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Residuals
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• Once found a good b, check bias

• Rule of thumb

– Bias same or smaller than statistical uncertainty

• NB. Evaluate derivative numerically:
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Choosing b: Bias
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• Bayes‘ theorem relates 

– the conditional probabilities 

• P(A|B) „A given B“ and 

• P(B|A) „B given A“

– the marginal probabilities P(A) and P(B)

– of events A and B
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Bayes‘ Theorem

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus

)(

)()|(
)|(

BP

APABP
BAP 

How to measure

Figure: Bob Cousins



• Rewrite Bayes‘ theorem for our purposes

– A = true event (track)

– B = measured event (track)

• Assume a-priory distribution P, calculate smearing matrix

• Proceed iteratively

– Choose prior distribution P

– Calculate         and then

– Optional: apply smoothing

– Replace P by U, iterate

• Limited number of iterations provides implicit regularization
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Iterative Bayesian Unfolding
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Example of Unfolding using Bayesian Method 
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• Multiplicity distribution among basic simple observables

• Experimental unfolding procedure challenging

• Multiplicity distribution of events with different number of parton 

interactions looks very different

• Tail of distribution populated by events with large MPI activity

• But: measurement of multiplicity distribution for specific number of 

parton interactions not feasible (to date…)
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Summary 
Multiplicity Distributions
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Underlying Event
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• What is the underlying event (UE)?

– Anything below the hardest scattering

• Due to steeply falling cross-section

– Most events have soft component

– If there is a hard parton scattering, there 

are additional soft parton interactions
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Underlying Event
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• Find hardest object

– Charged track, jet, Z, …

• Study distinct azimuthal regions wrt object

– Transverse (1/3p < |Dj| < 2/3p) = UE

• May be split into MIN and MAX region

– Towards (|Dj| < 1/3p)

– Back-to-back (|Dj| > 2/3p)

• Typical observables

– Number density, SpT, spT
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Underlying Event (2)
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• Activity perpendicular to hard object

• Strong rise at low pT,lead

– Impact parameter dependence

 MPI

– “Trivial” selection bias

• Mild positive slope at large pT,lead

– Initial- and final-state radiation
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Number Density (transverse)
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• Trivial bias in distribution

– The more particles drawn, the higher max pT

• Can be shown with simple toy 

(~20 lines ROOT, see backup)

– pT distribution: dN/dpT ~ pT-4.4

– Draw n particles from this distribution

– Determine max(pT)

– Calculate <n>(max(pT))
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Selection Bias
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• Chance for parton interactions 

depends on pp impact parameter

• Reminder: in pp collisions b is not 

directly accessible 

(contrary to AA collisions)
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Impact Parameter Dependence
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• Activity in direction of leading object

• Overall similar picture

– Steep increase, then mild increase

• Larger slope at large pT,lead than in 

the transverse region

• Harder jets fragment into

– more particles

– leading object with higher pT
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Number Density (towards)
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• Activity back-to-back of leading 

object

• Overall similar picture

– Steep increase, then mild increase

• Similar slope at large pT,lead than in 

the towards region

• Conclusions as for towards region

– Balancing jet has similar pT
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Number Density (away)
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• Instead of counting the particles, 

measure their SpT

• Generally similar trends

– Watch details in comparison to Nch !
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SpT (transverse)
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Towards

• Nch and SpT similar for 

transverse region

• Differences in towards and 

away region

– SpT closer correlated to 

leading pT

– Harder jets carry more 

momentum

• For these plots, phase space 

factor dhdj = 2/3p*2.5 ~ 5.2

 20 GeV/c  SpT = 3.82
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Nch vs. SpT
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• Leading track and leading jet 

measurements show similar dynamics

• Leading Z boson pT different

– Different turn on in Nch

– Larger activity in SpT
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UE vs. jets and Z
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• Split transverse region 

– more (MAX) and less activity (MIN) 

– measured by SpT

– About 20% effect

• Differences between Z and jet result 

vanishes in transverse MIN

– Most sensitive to other parton interactions 

independent of the hard object
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Transverse Min and Max
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• Results with three different low pT thresholds

• More than 75% of the particles within 0.15 < pT < 1 GeV/c

• Particularly important for MC tuning
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Dependence on pT cut

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus

pT > 0.15 GeV/c pT > 0.5 GeV/c pT > 1.0 GeV/c

J
H

E
P

 0
7
 (2

0
1

2
) 1

1
6

1

1
0.5



• Significant increase with s

– As overall multiplicity
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s Dependence
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• Compare

– Overall average multiplicity

(of MB collisions)

– Plateau in transverse region

(the UE contribution)

• Steeper slope in UE than MB

• With increasing s, UE grows 
faster than average

• Sensitive to interplay of hard 
process, ISR, FSR and MPI
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Relation of Nch and UE
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Transverse

• ATLAS (|h| < 2.5) vs. ALICE (|h| < 0.8)

– Transverse region similar

– Large difference in towards

• Due to size of jet around leading particle

• Can be checked numerically

(1 x ALICE towards + 2 x ALICE transverse) / 3 = 

ATLAS towards
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Influence of Acceptance
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• Published underlying event distributions != raw measurement

• Let’s use this example to understand

– which detector effects are relevant

– how to correct for them

• You need two things: 1) brain 2) MC

• Procedure

– Make a list of effects which could affect your measurement

(involves: previous analysis, discussion with colleagues, papers, …)

– Test these on MC
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Corrections
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• Testing with MC

– Construct your observable at many different steps

• Event level

• Track level

• Develop + apply corrections

• Compare the distributions at the different levels

– Reveals effects. 

Maybe some negligible  no correction needed

– MC Closure: Do the two blue boxes agree?
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Finding a Correction Procedure
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• Example for ALICE, pp, 7 TeV (PhD thesis, Sara Vallero)

• Event level

• Track level
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Strength of Detector Effects
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• Underlying-event specific effects

– Not reconstructed leading track, leads to 

re-orientation of towards, transverse, and away region

– E.g. about 5% migration about towards  transverse

• Correction

– Based on MC (implies MC dependence)

– Data-driven approach

• Apply tracking efficiency 2nd time to the leading track

• If reconstructed, fill normally

• If not, use sub leading track to orientate event
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Further Corrections
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Re-orientation Correction
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Overview: Corrections on Data
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• Underlying event observables characterize activity 

relative to the hardest scattering

• Important tool for MC tuning and modelling

• Transverse region studies activity from 

additional parton interactions

– With increasing s, underlying event grows faster than average multiplicity
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Summary 
Underlying Event
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Uncorrelated Seeds
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• Large range in Q2

– High Q2 jets

– Many low Q2 processes
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Uncorrelated Seeds
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How to experimentally measured number of parton interactions?



• Identify sets of particles stemming from the same parton interactions (= seed)
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Uncorrelated Seeds
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At high Q2, traditional jet finding  identify each jet

At low Q2, 1-2 particles  statistical approach
If we want to get a handle on the overall 

number of MPI, low Q2 processes crucial
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• Correlate pairs of particles

• Record azimuthal differences
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Experimental Approach
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trigger particle

associated particle

px

py

j1

j2

Dj

Near side Away side

Combinatorial base line

Both jet sides can contribute to 

the near side and away side

pT,assoc < pT,trig



• Pair yield

• Number of triggers Ntrig

• Number of associated particles

– on the near side

– on the away side

• Derive uncorrelated seeds
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Pair Yield & Uncorrelated Seeds
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Total number of particles

How many particles belong “together”

trigger particle 



• In symmetric pT bins, with pT,assoc < pT,trig

• With n particles within a minijet, n(n-1)/2 pairs can be formed

• Depends on second moment <n2> of distribution P(n)

• Limit: small <n> and monotonically falling P(n)
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Pair Yield
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• Test

• Geometrical row

• Poisson distribution

• Log series

58

Pair Yield (2)
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Uncorrelated Seeds: Numerical Example
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Seeds (true) 3 3 3

Ntrig 3 5 5

Nassoc 0 / 3 = 0 (1 + 1) / 5 = 2/5 (2 + 1 + 0 + 0 + 0) / 5 = 3/5

Nuncorrelated seeds 3 / (1 + 0) = 3 5 / (1 + 2/5) = 3.57 5 / (1 + 3/5) = 3.125

pT,assoc < pT,trig (!)

pT,A > pT,B > pT,C

A with B and C

B with C

C no partner

A
B

C

Approximation!
hj DD dd

Nd

N

assoc

trig

21

ASassocNSassoc

trig

seedseduncorrelat
NN

N
N

,,1 




Relation of Uncorrelated Seeds and MPI
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h Dependence pT Dependence

In Pythia, clear proportionality
JHEP 09 (2013) 049



Results: Pair Yields
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JHEP 09 (2013) 049

Near-side yield vs. Nch Away-side yield vs. Nch



Results: Uncorrelated Seeds
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• Uncorrelated seeds (~ MPI) increase linearly with Nch

• At large Nch, limit of MPI?

(i.e., larger multiplicity by fluctuation, not by additional MPI)
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Uncorrelated Seeds
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JHEP 09 (2013) 049

New data will tell…

7 TeV

2.76 TeV

0.9 TeV

7 TeV

2.76 TeV

0.9 TeV



• Correlation measurements sensitive to detector acceptance

– “Background” from non-uniform detector acceptance 

easily larger than signal

• Drawing particles from uniform distribution with 

– One gap  peak structure in two-particle Dj distribution

– Two gaps  back-to-back structure in two-particle Dj distribution
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Event Mixing
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• Detector limit in pseudorapidity

• Leads to tent in two-particle Dh distribution
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Limited h Acceptance
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• These effects can be estimated and corrected data-driven

• Signal S contains correlation within an event

• Background B contains "correlation" between different events

– Estimates pair efficiency and acceptance

– Normalized such that B(0,0) = 1

• Two particles going in the same direction, see the same acceptance

• Associated yield per trigger particle
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Event Mixing

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus

),(

),(1 2

hj

hj

hj DD

DD


DD B

S

dd

Nd

N

assoc

trig

hj
hj

DD
DD

dd

Nd

N
S

samepairs

trig

,

2
1

),(

hj
hj

DD
DD

dd

Nd

N
B

mixedpairs

trig

,

2
1

),(

F
ig

u
re

: E
m

ilia
 L

e
o

g
ra

n
d
e

= 1 by definition 

Not any two events can be mixed! 

Similar multiplicity and detector 

acceptance (z vertex) needed.



• Two-particle correlations measure associated particle yields

• Allows to calculate uncorrelated seeds

• These are proportional in Pythia to the number of MPI

• Direct access to number of low Q2 scatterings

• At high multiplicity, hint of limit in the number of MPI
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Summary 
Uncorrelated Seeds
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Hard Probes vs. Multiplicity
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• Multiplicity, underlying event activity and 

uncorrelated seeds probe soft part of MPI

• How does hard MPI production behave?

• How are the soft and hard related?

• Measurement of D and J/y

– c produced in hard scattering (mc = 1.28 GeV/c)

• Experimentally expressed as 

D/<D> vs. Nch/<Nch>

• For D: B feeddown fraction relevant

(B  D + X)
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Hard Probes
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D Production vs. Multiplicity
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linear

expectation

significant growth above linear

Nch/<Nch> = 6 

 factor 15 enhancement

D/<D> vs. Nch/<Nch> D/<D> ratio to 2-4 GeV/c

Within the uncertainties 

not pT dependent

JHEP 09 (2015) 148



• D and Nch measured in same rapidity

– Autocorrelation bias?

– Associated soft particle production with D?

• Measure D/<D> vs. forward multiplicity

– “V0” (-3.7 < h < -1.7 and 2.8 < h < 5.1)

• Similar increase observed

– Factor 5 at Nch/<Nch> = 3.5

– Multiplicity reach is smaller forward than at 

mid-rapidity
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Multiplicity Estimator
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• J/y are produced 

– in the collision “prompt” 

[direct from process producing ccbar]

– from the decay of a B quark “non-prompt”

[process has produced b quark]

• Different physics

• Can be experimentally distinguished by J/y impact parameter
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J/y Production
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J/y vs. Multiplicity
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Smaller growth for forward J/y

JHEP 09 (2015) 148

Based on 

one point!

Similar increase for D 

and J/y at mid-rapidity

New data confirms 

conclusion 

J/y

Similar increase for D and J/y  increase related to ccbar and 

bbar production process (only minor influence of hadronisation)



Prompt and Non-prompt
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Similar increase Too large uncertainties

JHEP 09 (2015) 148

Prompt Non prompt



• Growth significantly larger at 

mid-rapidity than at forward 

rapidity

• Autocorrelation bias

– Multiplicity measured in same 

phase space as hard probe

– Discussed later
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Rapidity Dependence

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus

Mid-rapidity

Forward



• D and J/y at mid rapidity grow faster than the average multiplicity

– Within current precision: pT independent

• Smaller growth for forward rapidity 

– At least partly an auto-correlation effect

• Within current precision, no conclusion for non-prompt component

• How to interpret this growth within a MC?
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Recap
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D Production in Pythia 8
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First 2  2 scattering

•Gluon fusion (gg  ccbar)

•See quark (cu  cu)
11%

Subsequent 2  2 scattering (MPI)

•Gluon fusion (gg  ccbar)

•See quark (cu  cu)
21%

2  2 scattering produces high 

virtuality gluon which splits into c 

quark

6%

Gluon from Initial or final state 

radiation splits into c quark
62%

JHEP 09 (2015) 148



Further Model Comparisons
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JHEP 09 (2015) 148

D mesons

Percolation model

EPOS 3 + Hydro

EPOS 3

Pythia 8

Growth not explained 

quantitatively up to now



• D and J/y measured as a function of multiplicity

– Proxy of the correlation of the production of hard and soft probes

• Rapidity dependence reveals auto-correlation bias

• D and J/y yields grow faster than multiplicity

• Quantitatively not explained by current models
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Hard Double Parton Scattering
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• Ample evidence for MPI at soft scales (Q2 ~ few GeV2)

• Semi-hard production also involved in MPI (D, J/y)

• What about higher Q2?

– 2  2 scattering probes higher x partons

 densities are lower at larger x (x ~ 2 pT / s)

• Quantified by effective cross-section seff

– Process independent!

– “Encodes” PDF

– In Eikonal picture 

81

Effective Cross-Section
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• Process i with si

• Process j with sj

• Probability sij to have i and j at the same time?

– As independent processes

• For Poisson distribution and identical processes

P(1) = e-1 l P(2) = e-2 l2/2

 seff = 1

• For pp collisions at LHC, seff ~ 20 mb

– Prefactor encoding circumstances in which processes occur
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What is seff?
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i j

Multiplying probabilities is very typical. Imagine 2 dice with 6 sides each. 

What is the probability to role two times 1?

 1/6 * 1/6 = 1/36
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• Trivial if we would know that i and j cannot 

come from the same parton scattering

– Not the case in practice

• Example: W+2 jet events

• Need experimental handle to distinguish 

single and double parton scattering
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How to measure seff?
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from different parton scatterings

Measure single process j
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Double Single



Distinguish single and double parton 

scattering in W+2 jet events

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus 84

JHEP 03 (2014) 032

Jets balance each other 

 Drel pT small

W boson and dijet system 

balance each other  DS ~ p

Relative pT balance

Azimuthal angle 

between W and dijet DS ~ random

Double Single

Drel pT large



• xx
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Signal and Background Distributions
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• Correct description of DS and Drel pT

– requires higher-order diagrams 

– inclusion of MPI
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Influence of MPI
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Extraction Method
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s Dependence
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JHEP 03 (2014) 032

Increase with s?

<MPI> increases

JHEP 11 (2016) 110



• Double parton scattering measures the probability that two 

processes occur in the one collision in different parton scatterings

– Quantified by seff

• Irreducible background of higher-order diagrams

– Diagram contains both processes within one parton scattering
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Multiplicity Biases
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• Many observables measured as a function of multiplicity

• Can we consider the multiplicity independent from the studied process?

– Independent = only characterization of the event activity

– Correlation between multiplicity and studied process only indirectly through event activity

• Let’s discuss two aspects

– What biases can occur when multiplicity is used to slice events into classes

– How are these biases related to MPI

91

Bias?
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• We discussed J/y vs. Nch measurement

• Imagine simple (unphysical) picture

– Random number of particles

– Per particle probability of producing J/y is 20%

– Variant: Per produced J/y add 2 particles

– Slope drastically changed
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Bias!
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J/y/<J/y> vs. Nch/<Nch>

Slope 0.2 

(as expected)

Slope 0.14

J/y vs. Nch



• Overall activity and multiplicity depends on nuclear overlap
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Concept: Centrality
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Short excursion

to heavy-ion physics

Peripheral

b > 0

Central

b = 0

Low multiplicity High multiplicity

b

Striking relation between b and multiplicity

Centrality defined in 0-100%

100% most peripheral 0% most central



• Multiplicity depends on participants nucleons Npart

– Npart depends on collision impact parameter b

• Clear correlation between multiplicity and b

• Correlation correlated across phase space
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Large Systems: Pb-Pb
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Phys. Rev. C 91 (2015) 064905 

p-Pb

• Can the multiplicity stemming from each 

Npart be treated independently?

• Tested within Glauber model

• Binning in b  unity

• Binning in Nch

– Unity for 0-70% centrality

– Deviations for the 30% lowest multiplicity

• So called multiplicity bias
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Large Systems: Pb-Pb
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Binning based on Nch

Pb-Pb



partch NN /  = average per Npart

[in Glauber: <Nch> per NBD]

Binning based on b



• Nuclear modification factor RAA commonly used to 

quantify energy loss in the Quark-Gluon Plasma

• Multiplicity bias distorts signal in peripheral collisions

• Above 80% centrality, RAA decreases due to bias
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Consequence: RAA in peripheral Pb-Pb
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• Less participating nucleons 

 larger biases

(8 in p-Pb vs. 110 in Pb-Pb) 

• Multiplicity bias at all centralities
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Intermediate Systems: p-Pb
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Phys. Rev. C 91 (2015) 064905 

p-Pb

p-Pb



• Couple Glauber and PYTHIA

• Calculate #MPI per NN collision

• Significant deviations from average

• Clear bias

 bias on Nch, hard yields, …
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Intermediate Systems: p-Pb
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more than average

less than average

average 

Phys. Rev. C 91 (2015) 064905 



• High pT particles are produced 

only in high Q2 processes

– High Q2
 high Nch (on average)

– Introduces trivial correlation

• Low multiplicity selections are 

depleted of such processes

– High pT yields reduced at low Nch

• Jet-veto bias

99

Intermediate Systems: p-Pb
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p-Pb 80-100%

p-Pb

pp

Mid-rapidity multiplicity

Phys. Rev. C 91 (2015) 064905 

These pp events never 

selected in 80-100% p-Pb

Events vs. Nch



• Nucleon-nucleon impact parameter bNN

– Increases in peripheral collisions  less MPI

– Decreases in central collisions  more MPI
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Intermediate Systems: p-Pb

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus

MPI/<MPI> vs. b

F
ig

u
re

: A
n

d
re

a
s
 M

o
rs

c
h

Phys. Rev. C 91 (2015) 064905 

<bNN> vs. Npart

Geometrical bias



• RpA usually sensitive to energy loss

– Distorted by these biases

• Effect depends on centrality estimator used

– The larger the separation between estimator and 

measurement, the smaller the biases

• No measurement without considering these biases

– Due to estimator dependence RpA renamed to QpA
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Consequence: RpA in p-Pb
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• Similar bias for RpA of reconstructed jets

• Rapidity dependence clearly visible
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Consequence: 

RpA in p-Pb
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Phys. Lett. B 748 (2015) 392-413



• Charged-particle spectra in multiplicity bins
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Small Systems: pp
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Large Nch

Low Nch

dNch/dpT vs. pT

Ratio pT dependent

Manifestation of jet-veto bias

Ratio to all vs. pT



• Charged-particle spectra in multiplicity bins
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Small Systems: pp
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Mid-rapidity estimatorForward estimator

The larger the separation between estimator 

and measurement, the smaller the biases



Exponent vs. Nch/<Nch>

EPOS

PYTHIA8

Exponent vs. Nch/<Nch>

• What is the high pT shape evolution?

– Quantified by power-law fit above 6 GeV/c
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Small Systems: pp
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Similar exponent in data … not necessarily in MCDynamic range

forward 

estimator

mid-rapidity estimator

Exponent vs. Nch/<Nch>



• How do the high pT yield scale with multiplicity?

• Significant growth

– The larger the larger the pT
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Small Systems: pp
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pT > 6 GeV/c

pT > 4 GeV/c

pT > 2 GeV/c



• Characterization of event activity with multiplicity is biased

– Multiplicity bias, e.g. when desiring a selection in impact parameter but 

using multiplicity

– Geometric bias, e.g. when high-multiplicity collisions select smaller-than-

average nucleon-nucleon impact parameter

– Jet-veto bias, e.g. low multiplicity disfavours large Q2 processes

• In large systems like Pb-Pb present in peripheral collisions

• In medium systems like p-Pb present in all event classes

• In pp collisions omnipresent and crucial for interpretation
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Summary 
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Collective Phenomena
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• After collision, QGP droplet in vacuum

• Energy density very high

• Strong pressure gradient from center to boundary

• Consequence: rapid expansion (“little bang”)

• Partons get pushed by expansion

 Momentum increase

• Measurable in the transverse plane (pT)

– Called radial flow

Expansion

p = 0

p = pmax

x

y

view in beam direction

Short excursion

to heavy-ion physics
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Elliptic Flow

Overlap of colliding nuclei not isotropic in non-central collisions

110
x

y

Defines reaction plane RP

(spanned by beam axis 

and impact parameter vector)

 Pressure gradients 

dependent on direction

in plane

out of plane

Short excursion

to heavy-ion physics



Anisotropy
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• Spatial anisotropy (almond shape)
– Quantified by eccentricity

• Pressure gradient larger in-plane

• Pressure pushes partons
– More in in-plane than out-of-plane

• Spatial anisotropy converts into momentum-
space anisotropy 
– “Faster” particles in-plane

– Measurable in the final state!
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Experimental Signal
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• Particles as a function of j - RP

• Define

– Second coefficient of Fourier expansion

• RP common symmetry plane (for all particles)

• What if there were no correlations with RP?
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Short excursion

to heavy-ion physics
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Two-Particle Correlations
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• Rewrite as 

• Reaction-plane estimation can be experimentally tricky

• v2 can also be measured from 2-particle correlations
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• Flow component overlaid by (mini)jet contribution

• This can also be looked at in two dimensions

– Azimuth Dj and pseudorapidity Dh
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2D Two-Particle Correlations
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flow modulation

+ (mini)jet

Yield vs. Dj vs. Dh

Near-side jet

+ resonances, ...

(Dj ~ 0, Dh ~ 0)

Away-side jet + flow

(Dj ~ p, elongated in Dh)

Near-side flow ridge

(Dj ~ 0, elongated in Dh)

include Dh axis



And in pp?
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Pb-Pb pp

Near-side ridge 

(flow) only in Pb-Pb

at least everyone thought so for a long time…
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• …observed in very high-multiplicity pp collisions

– 0.005% events with highest multiplicity

• …observed in high multiplicity p-Pb collisions

– ~40% events with highest multiplicity

– Surprisingly large magnitude

Near-Side Ridge
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here: h = hlab
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Double Ridge in p-Pb

• Subtraction procedure to “isolate” ridge contribution from jet correlations

– No ridge seen in 60-100% and similar to pp

–

0-20% 60-100%

=

ALICE, PLB719 (2013) 29 here: h = hlab

Two ridges !



v2 Coefficients in pp
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Eur. Phys. J. C 77 (2017) 428 Phys. Lett. B 765 (2017) 193

v2 vs. Nch v2 vs. Nch

Low Nch behaviour

depends on procedure



System Comparison
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Phys. Lett. B 765 (2017) 193



• In Pb-Pb collisions, correlations between all particles through a 

common symmetry plans are observed

• Small systems, p-Pb and (high-multiplicity) pp, 

show similar features

– Paradigm shift in the understanding of heavy-ion collisions

• Can part of these effects be related to MPI and the correlations 

between them?

– For this it is useful to answer the question if the observed ridge is related 

to the (mini)jet production
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Recap
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• Already discussed uncorrelated seeds 

measurement can be applied to p-Pb

– Challenge: how to count particles in ridge?

– Exploit two-dimensional (Dj and Dh) near-side 

structure
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Uncorrelated Seeds in p-Pb
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Away side

Combinatorial base line

Near side

Minijet peak (+ ridge)

Ridge structure



• Short range (|Dh| < 1.2)

• Long range (|Dh| > 1.2)

– Symmetrise to away side

– Subtract

• Caveats?

– Odd harmonics (like v3) not correctly symmetrised

 systematic uncertainties
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Ridge Subtraction
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Near-Side and Away-Side Yields
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Only minijet

Minijet contribution flattens for highest 60% multiplicity

highest Nch lowest Nch

Near-side yield Away-side yield



• Observable = associated yield/trigger

• Associated yield = particles from minijet

• Trigger = particles from minijet + 
uncorrelated bg

• Simple scenario
– Nminijets with Nassociated particles each

– Some soft background Nsoft

• Quantity stays constant with Nch only if 
Nminijets and Nsoft change by same factor
 hard and soft particle production exhibit 
same evolution with multiplicity
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Correlation of Hard and Soft
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• Quantity stays constant with Nch only if 

Nminijets and Nsoft change by same factor

 hard and soft particle production exhibit 

same evolution with multiplicity

• Statement doesn’t hold when ridge included

• Conclusion

– Independent parton-parton scatterings + 

incoherent fragmentation produce minijets

– Ridge is result of other source(s)
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Correlation of Hard and Soft
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• Uncorrelated seeds after 

subtraction of ridge component

• Linear growths with multiplicity

• No sign of saturation of number of 

MPI as hinted at in pp collisions
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Saturation of MPI in p-Pb?
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• Expanding hot and dense matter leads to collective phenomena

– All particles correlated with each other through common symmetry planes

– Text-book observable in heavy-ion collisions

• Similar effects observed in small collision systems 

– Involving ions on one side: (p-A, d-A)

– In pp collisions well established at high Nch; under investigation at low Nch

• Ridge structure in p-Pb collisions seems to be additive to minijets

produced by independent parton-parton scatterings + incoherent 

fragmentation
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Summary 
Collective Phenomena
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• Multiplicity distribution of events with different number of PI very different, but 
experimentally inaccessible

• Underlying event transverse region measures activity from additional PI in the same 
collision

• Uncorrelated seeds extracted from two-particle correlations are proportional to the 
number of PI (in MCs)

• Hard probes like D and J/y measured as a function of multiplicity are a proxy of the 
correlation of the production of hard and soft probes

• Double parton scattering quantifies with seff the probability that two hard processes 
occur in the one collision in different parton scatterings

• Multiplicity as event characterization suffers from various biases which have to be 
considering before drawing physics conclusions

• The collective ridge structure observed in small systems is additive to minijets
produced by MPI
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Take-Home Messages
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Thank you for your attention!
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Backup
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#include "TF1.h"

#include "TMath.h"

#include "TProfile.h"

#include "TCanvas.h"

#include "TH2F.h“

void selection_bias() {

TF1* ptDist = new TF1("ptDist",     
"x**-4.4", 0.5, 10);

TProfile* prof = new TProfile("prof", 
";p_{T,lead};N_{ch}", 100, 0, 10);

for (int trial=0; trial<10000; trial++) {  

for (int n=1; n<50; n++) {

double maxpt = 0;

for (int i=0; i<n; i++)

maxpt = TMath::Max(maxpt, 
ptDist->GetRandom());

prof->Fill(maxpt, n);

}

}

new TCanvas; 

prof->SetStats(kFALSE); 

prof->Draw("COLZ");

}
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Toy for Selection Bias

Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus



Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus 131

• Nucleons travel on straight lines

• Collisions do not alter their trajectory (energy of nucleons large 

enough)

• No quantum-mechanical interference

• Interaction probability for two nucleons is nucleon-nucleon 

cross-section

Glauber Monte Carlo

Roy Glauber

More details in nucl-ex/0701025

“Blue” nucleon has suffered 

5 NN collisions

Need to repeat for all other 

nucleons in A

A

B

b

Strongly dependent on 

impact parameter b
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Realistic Example

Figure: nucl-ex/0701025

Transverse view Along the beam axis
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• Distribution of nucleons in nuclei

– Based on nuclear density

– Typically Woods-Saxon distribution

• Nucleon-nucleon cross-section

– From pp measurements / extrapolations

Input to Glauber MC

Figure: nucl-ex/0701025

 a
Rr

r



exp1

1
)( 0 Nuclear 

radius R

Skin 
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Density in 

the center

(r)/(0) vs. r



Multi-Parton Interactions in Experiments - Jan Fiete Grosse-Oetringhaus 134

Glauber MC Output

Npart ~ A + A

• Number of spectators

– Nucleons which did not collide

• Participant/wounded nucleons

– Collided at least once

– Called Npart

– Scale with 2A (A = number of nucleons)

• Number of binary collisions

– Called Ncoll

– Scales with A4/3

• Rule of thumb

– Soft (low pT) observables scale with Npart

– Hard (high pT) observables scale with Ncoll

Ncoll ~ A · L = A4/3

L = A1/3
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• 10% most central at RHIC 

(Au-Au, 200 GeV)

– Ncoll ~ 1200

– Npart ~ 380

• 5% most central collisions 

at LHC (Pb-Pb, 5 TeV)

– Ncoll ~ 1770

– Npart ~ 384

• Difference mainly due to cross-section 

increase

Glauber MC Output (2)

Ncoll

Npart

Au-Au 200 GeV

nucl-ex/0701025

Ncoll, Npart vs. b


