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MPI in event generators

Klaus Werner
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The term “Multiple Parton Interactions” applies to several
quite different phenomena.

A recent book titled “Multiple Parton Interactions at the
LHC“ (World Scientific, Dec 2018) contains actually two
chapters:

� Hard MPI: The Double Parton Scattering (DPS),

� Soft MPI: Phenomenology and Description in MC Gen-
erators.

The second one will be discussed in this lecture, essentially
Multiple scattering (understand high multiplicity pp phe-
nomena)
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—————————————————————

1 Introduction

—————————————————————
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Before 2010:

Proton-proton scattering:

elementary, understood in terms of pQCD

Heavy ion collisions:

Collective effects, formation of a (flowing)
quark-gluon-plasma, macroscopic description

Since 2010: Incredibly interesting and unexpected pp and
pPb results at the LHC (collective effect also in pp?)
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Collective effects means

� Primary interactions at t = 0
Crucial : Multiple scattering

� Secondary interactions
formation of “matter” which expands

collectively, like a fluid
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1.1 Example: space-time evolution in pp

In the following:

An example of a EPOS simulation

of expanding matter in pp scattering
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1.2 Radial flow visible in particle distributions

Particle spectra affected by radial flow
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pPb at 5TeV CMS, arXiv:1307.3442

Strong variation of shape with multiplicity

for kaon and even more for proton pt spectra

(flow like)
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Λ/Ks versus pT (high compared to low multiplicity)

in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.6796
ALICE (2013) arXiv:1307.5530

Phys. Rev. Lett. 111, 222301 (2013)

In AA: partially due to flow
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1.3 Ridges & flow harmonics

Ridges appear in
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Initial “elliptical” matter

distribution:

Preferred expansion
along φ = 0
and φ = π

ηs-invariance
same form at any ηs

ηs =
1
2 ln t+z

t−z

φ
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Particle
distribution:
Preferred
directions
φ = 0 and φ = π

∝ 1 + 2v2 cos(2φ)
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Initial “triangular”

matter distribution:

Preferred expansion
along φ = 0, φ = 2

3π,
and φ = 4

3π

ηs-invariance

φ
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Particle
distribution:
Preferred
directions
φ = 0, φ = 2

3π,
and φ = 4

3π

∝ 1 + 2v3 cos(3φ)
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In general, superposition of several eccentricities εn,

εneinψPP
n = −

∫
dxdy r2einφe(x, y)
∫

dxdy r2e(x, y)

Particle distribution characterized by harmonic flow coef-
ficients

vneinψEP
n =

∫

dφ einφ f (φ)
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At φ = 0: Here, v2 and v3 non-zero
The ridge ∝ 1 + 2v2 cos(2φ) + 2v3 cos(3φ)

(extended in η)

Awayside peak
may originate
from jets, not the
ridge (for large
∆η)
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CMS: Ridges (in dihadron correlation functions)

also seen in pp (left) and pPb (right)

CMS (2010) arXiv:1009.4122

JHEP 1009:091,2010
CMS (2012) arXiv:1210.5482
Phys. Lett. B 718 (2013) 795

Looks like flow !
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1.4 Flow harmonics, identified particles

Flow shifts parti-
cles to higher pt

Effect increases
with mass

Also true for v2

vs pt

pt

v2 increasing mass
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ALICE: v2 versus pT: mass splitting (π, K, p)
in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.3237 ALICE (2012) F. Noferini QM2012

Typical flow result!
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So : “Flow-like phenomena” are also seen in pp

and pA, therefore:

Heavy ion approach

= primary (multiple) scattering
+ subsequent fluid evolution

becomes interesting for pp and pA
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—————————————————————

2 Multiple scattering: Theory

—————————————————————

concerning primary interactions

providing initial conditions
for secondary interactions
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2.1 Poles and branch cuts

Even functions f (x) of a real variable x
may need to be continued into the complex plane,
to understand their properties.

Example f (x) =
∞

∑
n=0

anxn =
∞

∑
n=0

( x

2i

)n

.

The radius of convergence is

ρ = lim
n→∞

|an|−1/n = 2
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Which is obvious, since f
considered as function of a
complex variable z, writes

f (z) =
1

1 − z/(2i)

having a pole at z = 2i,

Im z

Re z1

1

Blue area: convergence

whereas f (x) has no singularity (for x ∈ IR)
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Branch cuts

An example: The logarithm.

The exponential function defines a mapping M

M :
C → C

w → z = exp(w)

which is well defined in the whole complex plane.
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Consider w = x + iy, with x
fixed and y going from −π
to π.

(Trajectory γ going from
w1 = x − iπ to w2 = x + iπ)

x = Re w

w

w

2

1

y = Im w
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The mapped trajectory γ′ = M(γ) is given as
z = exp(w) = exp(x) exp(iy)

=> A circle with start and end point z1 = z2 = −ex

x = Re w

w

w

2

1

y = Im w

z  = 1 z2

Im z

Re z
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Doing the inverse mapping

M−1 : z → w = log(z),

we get for z1 = z2 two different values w1 and w2 !!

One has to define log in C − R≤0 (branch).
The negative real axis is called branch cut.
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Im z

Re z

z 2
z 1

x = Re w

w

w

2

1

y = Im w

The discontinuity at z = −ex:

log(z + iǫ)− log(z − iǫ) = 2πi
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2.2 Cut diagrams

The scattering operator Ŝ is defined via

|ψ(t = +∞〉 = Ŝ |ψ(t = −∞〉
Unitarity relation Ŝ†Ŝ = 1 gives (considering a discrete Hilbert space)

1 = 〈i| Ŝ†Ŝ |i〉
= ∑

f

〈i| Ŝ† | f 〉 〈 f | Ŝ |i〉

= ∑
f

〈 f | Ŝ |i〉∗ 〈 f | Ŝ |i〉
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Expressed in terms of the S-matrix:

1 = ∑
f

S∗
f iS f i

Using S f i =δ f i + i(2π)4δ(p f − pi)Tf i

dividing by i(2π)4δ(0) :

1

i
(Tii − T∗

ii ) = ∑
f

(2π)4δ(p f − pi)
∣
∣Tf i

∣
∣

2

= 2s σtot for s → ∞

(see next page)
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✬

✫

✩

✪

Be φ le current of incoming particles hitting a target of surface A containing
N particles. The transsition rate τ is

τ = φA
σN

A
= φ σ N,

The cross section is σ =
τ

Nφ
=

τ

V φ ρ
=

W

TV φ ρ
≡ W

TV w
.

The transition probability W = |S f i|2 is

(

(2π)4δ4(p f − pi)
)2

|Tf i|2 = TV (2π)4δ4(p f − pi)|Tf i|2.

The cross section is then σ =
1

w
|Tf i|2 (2π)4δ4(p f − pi).

with w = 2E1v12E2. We need a covariant form of f = E1v1E2. In the lab frame, we have

f 2 = |~p1|2m2
2 = (E2

1 − m2
1)m

2
2, which gives the invariant form f =

√

(p1 p2)2 − m2
1m2

2. With

2p1 p2 = s − m2
1 − m2

2, we get 2 f =
√

(s − m2
1 − m2

2)
2 − 4m2

1m2
2, and thus

w = 4 f = 2

√
(

s − (m1 + m2)
2
) (

s − (m1 − m2)
2
)

→ 2s for s → ∞
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Using

1

i
(Tii − T∗

ii ) = 2ImTii ,

we get the optical theorem

2ImTii = ∑
f

(2π)4δ(p f − pi)
∣
∣Tf i

∣
∣2 = 2s σtot
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Assume:

� Tii is Lorentz invariant → use s, t

� Tii(s, t) is an analytic function of s, with s considered
as a complex variable
(Hermitean analyticity)

� Tii(s, t) is real on some part of the real axis

Using the Schwarz reflection principle, Tii(s, t) first defined
for Ims ≥ 0 can be continued in a unique fashion
via Tii(s∗, t) = Tii(s, t)∗ .
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So:

1

i
(Tii(s, t)− Tii(s, t)∗) =

1

i
(Tii(s, t)− Tii(s

∗, t))

Def:

disc T = Tii(s + iǫ, t) − Tii(s − iǫ, t)
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We have finally

1

i
disc T = (2π)4δ(p f − pi)∑

f

∣
∣Tf i

∣
∣

2
= 2s σtot

Interpretation: 1
i disc T can be seen as a so-called “cut di-

agram”, with modified Feynman rules, the “intermediate
particles” are on mass shell.
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Modified Feynman rules :

� Draw a dashed line from top to bottom

� Use “normal” Feynman rules to the left

� Use the complex conjugate expressions to the right

� For lines crossing the cut: Replace propagators by mass
shell conditions 2πθ(p0)δ(p2 − m2)
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Cutting a diagram representing elastic scattering

corresponds to inelastic scattering

2

=  
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Cutting diagrams is useful in case of substructures:

=

Precisely the multiple scattering structure
in EPOS
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= +

++ + ...

Cut diagram
= sum of products of cut/uncut subdiagrams
=> Gribov-Regge approach of multiple scattering



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 55

2.3 Parton evolution

A fast moving proton

t

z

proton

cloud 
of gluons

emits successively
partons (mainly
gluons), quasi-real
(large gamma fac-
tors)
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... which can be probed by a virtual photon
(emitted from an electron)

t

z

proton photon

kp
qbar

q

color
dipole

photon splits
into q-qbar

→Color dipole

p and k are pro-
ton and photon
momentum
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What precisely the photon “sees” depends on two kine-
matic variables,

the virtuality

Q2 = −k2

and the Bjorken variable

x =
Q2

2pk

which probes partons with momentum fraction x.
It determines also the approximation scheme to compute
the parton cloud.
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s
−λQ = x

ln Q2

ln 1/x

s
o
ft

BFKL

saturation

DGLAP

DGLAP: sum-
ming to all or-
ders of αs ln Q2

BFKL: sum-
ming to all
orders of αs ln 1

x

Linear
equations
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BFKL (Balitsky, Fadin, Kuraev, and Lipatov):

∂ϕ(x, q)

∂ ln 1
x

αsNc

π2

∫

d2k K(q, k)ϕ(x, k)

with xg(x, Q2) =
∫ Q2

0

d2k

k2
ϕ(x, k),

DGLAP (Dokshitzer, Gribov, Lipatov,
Altarelli and Parisi):

∂g(x, Q2)

∂ ln q2
=
∫ 1

x

dz

z

αs

2π
P(z)g(

x

z
, Q2)
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Very large ln 1/x : Saturation domain

t

z

proton

Non-linear ef-

fects

Gluon from
one cascade is
absorbed by
another one
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2.4 pp scattering (linear domain)

proton proton

Same evolution as in proton-photon (causality)
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Different way of plotting the same reaction

nucleon

nucleon
t=0

time

log(x /x )0.5 + −

inelastic scattering diagram



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 63

Corresponding cut diagram

referred to as “cut parton ladder”

= amplitude squared of the inelastic diagram
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Corresponding elastic diagram

referred to as “(uncut) parton ladder”
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2.5 Soft domain

Very small ln Q2: No perturbative treatment!

But one may use again the hypothesis of Lorentz invari-

ance and analyticity of the T-matrix. One starts with a par-
tial wave expansion of the T-matrix (Watson-Sommerfeld
transform) :

T(t, s) =
∞

∑
j=0

(2j + 1)T (j, s)Pj(z)

with t ∝ z − 1, z = cos ϑ, Pj: Legendre polynomials.
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With α(s) being the right-
most pole of T (j, s) one gets
for t → ∞:

T(t, s) ∝ tα(s)

Im j

Re j

α (s)

and assuming crossing symmetry one gets the famous
asymptotic result

T(s, t) ∝ sα(t)

with the “Regge pole”

α(t) = α(0) + α′t
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Perturbative:

Parton ladder

T-matrix computed
(DGLAP)

Soft:

Soft Pomeron

gluon fields

T-matrix parametrized
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Formulas (see Phys.Rept. 350 (2001) 93-289):

Tsoft(ŝ, t) = 8πs0 i γ2
Pom−parton

(
ŝ

s0

)αsoft(0)

× exp(λsoft t) ,

with

λsoft= 2R2
Pom−parton + α′

soft ln
ŝ

s0
.
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Cut soft Pomeron (Schwarz reflection principle):

1

i
disc Tsoft(ŝ, t)

=
1

i
[Tsoft(ŝ + i0, t)− Tsoft(ŝ − i0, t)]

= 2Im Tsoft(ŝ, t)
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Interaction cross section,

σsoft(ŝ) =
1

2ŝ
2Im Tsoft(ŝ, 0) ,

= 8πγ2
part

(
ŝ

s0

)αsoft(0)−1

,

using the optical theorem (with t = 0),

which grows faster than data
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2.6 Semihard Pomeron

soft

soft

parton
ladder
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Space-time picture of semihard Pomeron

soft preevolution

cascade
parton

proton proton
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Hard cross section and amplitude (see Phys.Rept. 350 (2001) 93-289):

σ
jk
hard(ŝ, Q2

0) =
1

2ŝ
2Im T

jk
hard(ŝ, t = 0)

= K ∑
ml

∫

dx+
B dx−

B dp2
⊥

dσml
Born

dp2
⊥

(x+
B x−

B ŝ, p2
⊥)

×E
jm
QCD(x

+
B , Q2

0, M2
F) Ekl

QCD(x
−
B , Q2

0, M2
F)θ
(

M2
F − Q2

0

)
,

One knows (Lipativ, 86): amplitude is imaginary, and nearly
independent on t => (with R2

hard ≃ 0) :

T
jk
hard(ŝ, t) = iŝ σ

jk
hard(ŝ, Q2

0) exp
(

R2
hard t

)
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Semihard amplitude :

iTsemihard(ŝ, t) = ∑
jk

∫ 1

0

dz+

z+
dz−

z−

×Im T
j
soft

( s0

z+
, t
)

Im Tk
soft

( s0

z−
, t
)

iT
jk
hard(z

+z− ŝ, t)

(valid for s → ∞ and small parton virtualities except for
the ones in the ladder)
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2.7 Cross sections

(a) Exclusive : a + b → c + d

(b) Total : a+b → X (sum of (a) )

(c) Inclusive : a + b → c + X (weighted sum of (a) )

There are simple formulas for inclusive cross sections (AGK
cancellations), but one needs to go beyond when studying
high multiplicity pp.
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Consider multiple scattering amplitude

iT = ∏ iTP

cross section: sum over all cuts.

For each cut Pom:

1

i
discTP = 2ImTP ≡ G

For each uncut one:

iTP + {iTP}∗ = i (i ImTP) + {i (i ImTP)}∗ = −2ImTP ≡ −G
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Inclusive cross section: weighted sum over all cuts: The
multiplicity for k cut Pomerons is kN, if N is the multiplic-
ity per cut Pomeron.

Contribution to the inclusive cross section for n
Pomerons:

σ
(n)
incl ∝

n

∑
k=0

kN Gk (−G)n−k

(
n
k

)

= 0 for n > 1

Only n=1 contributes (single Pomeron) !!

AGK cancellations for n>1
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simple diagram even in case of multiple scattering

corresponds to factorization:

σincl = F ⊗ σelem ⊗ F
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Kind of obvious that factorization should hold for inclu-
sive cross sections, so

σincl = F ⊗ σelem ⊗ F

may be used as starting point, with F taken from DIS (photon-
proton).



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 80

—————————————————————

3 Multiple scattering: Model overview

—————————————————————

with contributions from T. Pierog, S. Ostapchenko, C. Bierlich, F. Riehn,
P. Tribedy, A. Fedynitch
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Models for min bias and high multiplicity pp

model Gribov Dipole Facto used authors
Regge risation for CR

QGSJETII X I X Ostapchenko

EPOSLHC X I X Pierog, Werner

EPOS3 X I Werner, Pierog

DIPSY IX Lönnblad, Bierlich

IP-Glasma IX Tribedy, Schenke

SIBYLL IX X Engel, Riehn

DPMJETIII IX X Engel, Fedynitch

PYTHIA IX Sjostrand, Skands

HERWIG IX Marchesini, Webber
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Models for high multipl pp, pA, AA

including collective effects

ohttp://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/
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model primary secondary
scatterings interactions

EPOS Gribov Regge viscous hadronic
hydrodynamical cascade

expansion of QGP

IP-Glasma Dipole model “ Ig
AMPT Minijets partonic cascade “

from Pythia

Plus many hydro models with assumed initial conditionsIg

Cascade means:

Successive scatterings a+ b → c+ d according to known cross sections
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3.1 Gribov-Regge multiple scattering approach

EPOS, QGSJETII

pQCD  

soft

soft

pQCD  

nucleon

nucleon

more details later

S-Matrix based
on Pomerons

Pomerons :
Parton ladders (initial
and final state radiation,
DGLAP) + soft

Cutting rules to get in-
elastic cross sections.

Same principle for pp,
pA, AA
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Nonlinear effects in QGSJET

Pomeron-Pomeron coupling

+ ...= +

� Summing of all orders

� No energy conservation

� (in EPOS full energy conservation, but effective treatment of nonlinear effects)
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Nonlinear effects in EPOS

Nonlinear effects (gluon fusion) taken care of via a saturation scale Qs

Saturation scale depends on

Pomeron energy (
√

x+x−s) and
the environment

Selfconsistent procedure within
multiple scattering framework
(more later)

ladder partons

nucleons
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3.2 Dipole approach

Initial state radiation in DIPSY (from Christian Bierlich)

Initial nucleon: Three dipoles

LL BFKL in b-space + corrections: A dipole (~x,~y) can emit a gluon at position ~z
with probability (P) per unit rapidity (Y)

dP

dY
=

ᾱ

2π
d2
~z

(~x −~y)2

(~x −~z)2(~z −~y)2
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Multiple scattering

Multiple color exchange
between dipoles i and j with
probabilities

α2
s

4

[

log

(

(~xi −~yj)
2(~yi −~xj)

2

(~xi − ~xj)2(~yi − ~yj)2

)]2

-> kinky strings

� Two “leading“ strings

� Additional strings
from loops

� No Remnants

Many strings:
Lund strings may overlap

=> color ropes
(Larger eff. string tension)
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Initial state in IP-Glasma (from Prithwish Tribedy)

IP-Sat dipole model (r⊥ =dipole size):

dσ

d2b
= 2 [1 − exp (−F(r⊥ , x, b)] , F ∝ r2

⊥αs(µ
2)xg(x, µ2)T(b)

T(b) : Gaussian profile, µ2 = 4/r2
⊥ + µ2

0, xg : DGLAP evolution

Saturation scale Qs defined via

F
(

r⊥, x =
2

Q2
s

, b
)

=
1

2

IP-Glasma: Color charge squared for projectile A and target B :

g2µ2
A = ∑nucleons g2µ2

i , with g2µ2
i ∝ Q2

s with Q2
s from IP-Sat model.



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 90

Multiple Scattering

Color charge density ρA/B

generated from Gaussian dis-
tribution with variance g2µ2

A
(contains DGLAP, saturation)

Current
Jν = δν±ρA/B(x∓, x⊥)

Field from [Dµ, Fµν] = Jν

Numerical (lattice) solution,
fields can be expressed in terms
of initial ones:
Ai = Ai

A + Ai
B,

Aη =
ig
2 [A

i
A, Ai

B]

Initial configuration

JIMWLK evolution

Single gluon
emission

A (classical field)

Multiple scattering:
Nonlinearity in terms of A:
Infinite number of g + g → g
processes

Fields→Gluons→Pythia strings
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3.3 Models based on factorization

σjet =
∫

dx1dx2

∫

dp2
t ∑ fi(x1, p2

t ) f j(x2, p2
t )

dσij

dp2
t

(ŝ, t̂) (A)

nucleon

nucleon

σ

f

f PYTHIA

HERWIG

SIBYLL

DPMJETIII

First step: σjet according to (A)

Second step: Multiple scattering scheme via eikonal formula

prob(n) =

[
σjet(s) T(s, b)

]n

n!
exp

(
−σjet(s) T(s, b)

)
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Multiple scattering in

SIBYLL
From F. Riehn

Multiple scattering via
eikonal model with soft and
hard component

� No Remnants

� Main scattering
=> qq-q strings

� Further scatterings
=> strings between

gluon pairs

nucleon

nucleon

Saturation scale from

αsNc
Q2 × 1

N2
c −1

xG
πR2 = 1
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Multiple

scattering

in Pythia

arXiv:1101.2599

Color
reconnections
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—————————————————————

4 Multiple scattering in EPOS

—————————————————————

in collaboration with T. Pierog, S. Ostapchenko,
B. Guiot, G. Sophys, , M. Stefaniak

Parton based Gribov-Regge theory. By H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner.

hep-ph/0007198. Published in Phys.Rept. 350 (2001) 93-289.
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4.1 Single scattering
(single Pomeron)

soft

soft

parton
ladder

� Parton emission starts long
before the actual interaction
(partons are very long-lived
due to a large γ).

� Soft pre-evolution

� Subsequent parton emissions
towards smaller x-values and
larger virtualities (from both
sides).

� The final partons from either
nucleon interact (“hard” colli-
sion).



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 97

4.2 Multiple scattering

Be T the elastic (pp,pA,AA) scattering T-matrix =>

2s σtot =
1

i
disc T

Basic assumption : Multiple “Pomerons”

iT = ∑
k

1

k!
{iTPom × ... × iTPom}
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Example: 2 “Pomerons”
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Evaluate

1

i
disc{iTPom × ... × iTPom}

using “cutting rules” :

A “cut” multi-Pomeron diagram

amounts to the sum of all possible cuts
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Example of two Pomerons

+

++
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Using “Pomeron = parton ladder + soft”, we have (first dia-

gram)

= remnant

nucleon

nucleon
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Using a simplified notation
for “cut” and “uncut” Pomeron

one gets ...



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 103

4.3 Complete result

(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

For pp, pA, AA:

σtot = ∑
cut P

∫

∑
uncut P

∫

A

B

uncut

−G

cut

G

︸ ︷︷ ︸

partial cross section σK
Dotted lines : Cut Pomerons (parton ladders)
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σtot =
∫

d2b
∫ A

∏
i=1

d2bA
i dzA

i ρA(
√

(bA
i )

2 + (zA
i )

2)

B

∏
j=1

d2bB
j dzB

j ρB(
√

(bB
j )

2 + (zB
j )

2)

∑
m1l1

. . . ∑
mABlAB

(1 − δ0Σmk
)
∫ AB

∏
k=1

( mk

∏
µ=1

dx+k,µdx−k,µ

lk

∏
λ=1

dx̃+k,λdx̃−k,λ

){

AB

∏
k=1

(
1

mk!

1

lk!

mk

∏
µ=1

G(x+k,µ, x−k,µ, s, |~b +~bA
π(k) −~bB

τ(k)|)

lk

∏
λ=1

−G(x̃+k,λ, x̃−k,λ, s, |~b +~bA
π(k) −~bB

τ(k)|)
)

A

∏
i=1

(

1 − ∑
π(k)=i

x+k,µ, − ∑
π(k)=i

x̃+k,λ

)α B

∏
j=1

(

1 − ∑
τ(k)=j

x−k,µ − ∑
τ(k)=j

x̃−k,λ

)α
}
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� Complicated due to strict energy sharing

=> 10,000,000-dimensional intergrals, not separable

� but doable

– Parameterizations for G(x+, x−, s, b)

– Analytical integrations

– Employing Markov chain techniques
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Step 1:

� We compute partial cross sections σK for particular con-
figurations K via analytical integration

� K is a multi-dimensional variable
for example for double scattering in pp with two Pomerons in-
volved: K =

{
x+1 , x−1 ,~pt1, x+2 , x−2 ,~pt2

}

� Configurations K in AA scattering may be quite com-
plex
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Step 2:

The partial cross sections σK can be

� interpreted as probability distributions,

� enabling us to use Monte Carlo techniques to
generate configurations K
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Since we are dealing with multidimensional probability
distributions, we have to employ very sophisticated

Markov chain techniques

to generate configurations according to Ω.
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4.4 Configurations via Markov chains

(the heart of EPOS, see Phys. Rept. 350, 2001)

Consider a sequence of multidimensional random
numbers (or better random configurations)

x1 , x2 , x3, ...

with ft being the law for xt.

A homogeneous Markov chain is defined as

ft(x) = ∑
x′

ft−1(x
′)p(x′ → x).

with p(x′ → x) being the transition probability (or matrix).
Normalization : ∑x p(x′ → x) = 1.
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Let f be the law for xt. The law for xt+1 is

∑
a

f (a) p(a → b) .

One defines an operator T (comme Translation)

T f (b) = ∑
a

f (a) p(a → b) .

So T f is the law for xt+1 when f is the law for xt.



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 111

A law is called stationary if T f = f .

Theorem: If a stationary law T f = f exists, then Tk f1 con-
verges towards f (which is unique) for any f1.

So to generate random configurations according to some
(given) law f ,

� one constructs a T such that T f = f

� and then considers f1 → T f1 → T2 f1...

� and constructs the corresponding random configura-
tions
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One needs, for a given law f ,
to find a transition matrix p such that T f = f

Sufficient condition (detailed balance):

f (a) p(a → b) = f (b) p(b → a) ,

Proof : T f (b) = ∑
a

f (a) p(a → b)

= ∑
a

f (b) p(b → a)

= f (b)∑
a

p(b → a)

= f (b) .
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4.5 Metropolis alorithm

Definitions:
pab = p(a → b) ,

fa = f (a) .

Take
pab = wab uab . (a 6= b) .

with wab : proposal matrix (∑b wab = 1)

uab : acceptance matrix (uab ≤ 1)

This is NOT the simple acceptance-rejection method!!
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Detailed balance:
fa pab = fb pba

amounts to
fa wab uab = fb wba uba ,

or
uab

uba
=

fb

fa

wba

wab
.
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uab

uba
=

fb

fa

wba

wab
.

is solved by

uab = F

(
fb

fa

wba

wab

)

,

with a function F with

F(z)

F(1
z )

= z .

Proof : With z ≡ fb

fa

wba

wab
one finds :

uab

uba
=

F(z)

F( 1
z )

= z =
fb

fa

wba

wab
.
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The F according to Metropolis is

F(z) = min(z, 1) .

One finds indeed

F(z)

F(1
z )

=
min(z, 1)

min(1
z , 1)

=

{
z/1 pour z ≤ 1
1/1

z pour z > 1

}

= z .

So one proposes for each iteration a new configuation b
according to some wab, and accepts it with probability

uab = min

(
fb

fa

wba

wab
, 1

)

.
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Configuration lattice, define wab such that b changes w.r.t.
a only on one lattice site (like Ising model Metropolis)

1
2
3
...

AB

1 2 3 ...
interaction

NN
pair

mmax

Long iterations, but allows to generate very complex
configurations according to very complex laws.
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4.6 Particle production

Generating “configurations” is only half the story:

How do we obtain the corresponding partons which

“make” the ladder, and finally the hadrons?

for a given ladder, given momenta and given flavors at
the endpoints
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For particle production, only the cut Pomerons play a role

A

B

uncut

−G

cut

G

the uncut ones have been summed over
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parton
ladder

soft

soft Reminder: in order to com-
pute the contribution of a cut
Pomeron to a partial cross
section, we sum over emit-
ted partons, integrate over all
momenta.

Consistency requires to use these same formulas

to obtain probability distributions for the parton

emissions (what we do).
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First : Get the end partons types (i and j ) and their mo-
menta of the hard part (parton ladder)

i

j

Prob. distribution proportional to the cross section

σ
ij
hard(ŝ, Q2

1, Q2
2)
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Realization:

� big tables with pre-calculated cross sections,

� to be used via interpolation

� to generate partons using rejection methods
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Having the end partons i, j, how to get the intermediate
ones (like m, k etc)?

i

j

m
k
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Actually the diagram k to j correponds to σ
kj
hard(ŝ, Q2

1, Q2
2),

the same σhard as used for the end partons, just with a different limit for Q1

i

j

k
m
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Probability of single emission m → k :

prob(ξ, Q2) = dξ
dQ2

Q2
∆m(Q2

1, Q2)
αs

2π
Pk

m(ξ) σ
kj
hard(ξ ŝ, Q2, Q2

2)

with a given parton j on the other end.

Attention: emission on one side depends on

existing parton the the other end!
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4.7 Considering charm and botton

(recent development)

Notation:

q = light quark (u,d,s)

Q = heavy quark (c,b)
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Heavy quark production

in EPOS multiple scattering framework

Q

Q

Q

Q

Q

Q

Born

SLC
TLC

SLC

TLC

as light quark
production

In any of the ladders

� during SLC
(space-like cascade)

� during TLC
(time-like cascade)

� in Born

but mQ non-zero

(mc = 1.3, mb = 4.2)
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Remarks

Q

Q
Q Q

Q
Born

SLC
Q

� TLC may be
initiated by a parton

– from Born
process

– from SLC

� Splittings in SLC
may provide
Q or Q̄ in Born

)
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Heavy quark masses play a role

� in matrix elements

� as condition in TLC splitting:

g → QQ̄ requires Q2 > (2mQ)
2

HQ pair

(Q2= virtuality of mother)
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� as condition in
SLC splitting:

p q

k

4−momenta:

H
Q

 p
ai

r
Energy-momentum
conservation:
q = p − k

Technicalities:
We suppose

p = (E, 0, 0, E).

We define

n = (1/2E, 0, 0,−1/2E),

kt = (0, kx, ky, 0).

We get

p2 = n2 = pkt = nkt = 0, pn = 1.

→ k = xp +
k2 − k2

t

2x
n + kt.

We define Q2 = −k2.
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The virtuality of the TL parton is assumed to be m2
Q, so

q2 = k2 − 2pk = −Q2 +
Q2 + k2

t

x
= m2

Q (using Q2 = −k2)

→ −k2
t =Q2 − xQ2 − xm2

Q > 0

which implies

x <
Q2

Q2 + m2
Q

,

suppressing large x.
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As starting virtuality of the TLC, we use

Q2
ini = (αpt)

2

with a coefficient α in the range 1-2.

Our favorite value is
α = 2

In particular B-meson data in pp favor α = 2, otherwise there is lit-
tle production during the TLC, and spectra are too low compared to
data.
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Note: Contrary to the light quarks, there appear no HQs

� initially in the in colliding hadrons

� in string fragmentation

� in QGP hadronization
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Only very recently: Completely consistent treatment of

HQ in the SL cascade , with generation of partons (m → k)
according to

i

j

k
m

prob(ξ, Q2) = dξ
dQ2

Q2
∆m(Q2

1, Q2)
αs

2π
Pk

m(ξ) σ
kj
hard(ξ ŝ, Q2, Q2

2)
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No conceptual, but technical difficulties.

Sofar we had only 4 classes of parton pairs, namely (with
q meaning light (anti)quark)):

� gg, gq, qg, qq

� where masses are ignored (prob(u) = prob(q)/(2N f ))

used in many places.
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Now we have for the parton pairs i,j :
(q=light, c=charm,b=bottom)

� gg, gg, gq, qg, qq, gc, cg, qc, cq, gb, bg, qb, bq, cc, bb,

cb, bc

� with c and b being different from q (masses and thresh-

holds)

where in addition one has to distinguish cc, c̄c̄ from cc̄,

c̄c.
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� All these cross sections have to be

– computed,

– tabulated.

� The interpolation function have to be updated

� The calculation of the Pomeron amplitudes have to

be updated
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4.8 From partons to strings:

For t > 0, a (cut) Pomeron represents
actually a (mainly) longitudinal

color field,

where the ladder rungs (gluons) rep-
resent small transverse momentum
components(1).

field

electric

tudinal

longi

=
 c

ol
or

 s
tr

in
g

——————————————————————————
(1) Lund model idea, first e+e-,

then generalized to pp, see also CGC
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Realization:

One-dimensional character of the fields

=> classical string theory
(which does not use much more than some general symmetries)

� Mapping: parton ladders -> kinky strings
(parton momentum = kink)

� Classical string evolution + decay via area law
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String:

two-
dimensional
surface

x(σ, τ)

in Minkowski
space Break probability :

dP = pB dA,
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In detail: The string surface is given as

xµ(σ, τ) = x0 +
1

2

∫ σ+τ

σ−τ
gµ(ξ)dξ,

so it is completely given in terms of some function gµ(ξ)
with

gµ(σ) = ẋµ(σ, τ = 0).
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We consider only strings with a piecewise constant initial
velocity g, which are called kinky strings.

� This string is characterized by a sequence of σ inter-

vals [σk, σk+1], and the corresponding constant val-

ues (say vk) of g in these intervals.

Such an interval with the corresponding constant value of
g is referred to as “kink”.
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A parton ladder represents a sequence of partons of the
type q − g... − g − q̄, with soft “end partons” q and q̄, and
hard inner gluons g.

The mapping “partons →string” is done such that we iden-

tify a parton sequence with a kinky string

by requiring “parton = kink”,

with σk+1 − σk = energy of parton k

and vk = momentum of parton k / Ek.
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What is really done (PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001):

A string represents a two-dimensional surface in Minkowski space

x = x(σ, τ),

with σ being a space-like and τ a time-like parameter.

In order to obtain the equations of motion, we need a Lagrangian. It is obtained by
demanding the invariance of the action with respect to gauge transformations. This
way one finds the Lagrangian of Nambu-Goto:

L = −κ
√

(x′ẋ)2 − x′2ẋ2,

with “dot” and “prime” referring to the partial derivatives with respect to σ and τ,
and with κ being the string tension.
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With this Lagrangian we get the Euler-Lagrange equations of motion:

∂

∂τ

∂L

∂ẋµ
+

∂

∂σ

∂L

∂x′µ
= 0.

We use the gauge fixing

x′2 + ẋ2 = 0 and x′ẋ = 0,

which provides a very simple equation of motion, namely a wave equation,

∂2xµ

∂τ2
− ∂2xµ

∂σ2
= 0,

with the boundary conditions:

∂xµ/∂σ = 0, σ = 0, π.
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The solution of the equation of motion (with initial extension zero) is

xµ(σ, τ) = x0 +
1

2

(∫ σ+τ

σ−τ
gµ(ξ)dξ

)

,

where g is the initial velocity, g(σ) = ẋ(σ, τ)τ=0 .

Strings are classified according to the function g. Strings with piecewise constant
g are called kinky strings, each segment being called kink, finally identified with
perturbative partons.

In the following figure, we show the evolution of a string generated in electron-
positron annihilation (4 internal kinks).
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4.9 Hadron production

is finally realized via string breaking, such that string frag-
ments are identified with hadrons.

Hypothesis: the string breaks within an infinitesimal area

dA on its surface with a probability which is propor-

tional to this area,

dP = pB dA,

where pB is the fundamental parameter of the procedure. 1

1Elegant realization, making use of the dynamics of strings with
piecewise constant initial conditions.



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 149

A string break is realized via quark-antiquark or
diquark-antidiquark pair production with probability

pi(j) =
1

Z
exp

(

−π
M2

i(j)

κ

)

with
Mij = Mi + Mj + cicjM0

Transverse momenta ~pt and −~pt are generated at each breaking, ac-
cording to

f (k) ∝ e−|~pt|/2p̄t , (1)

with a parameter p̄t.
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Jets:

Parton ladder = color flux tubes = kinky strings

remnant

remnant

flux tube

(here no IS radiation, only hard process producing two gluons)
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which expand and break
via the production of quark-antiquark pairs
(Schwinger mechanism)

remnant

remnant
jet

jet

String segment = hadron. Close to “kink”: jets
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Check: jet production in pp at 7 TeV
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Comparison with parton model calculation

using CTEQ PDFs for pp at 7 TeV
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—————————————————————

5 Collectivity in EPOS

—————————————————————
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5.1 Core-corona procedure

Heavy ion collisions

or high energy & high multiplicity pp events:
� the usual procedure has to be modified, since the density of

strings will be so high that they cannot possibly decay indepen-
dently

Some string pieces will constitute bulk matter,
others show up as jets

These are the same strings (all originating from hard processes at
LHC) which constitute BOTH jets and bulk !!
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again: single scattering => 2 color flux tubes

remnant

remnant

flux tube
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... two scatterings => 4 color flux tubes

remnant

flux tube

remnant
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... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)
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Core-corona procedure (for pp, pA, AA):
Pomeron => parton ladder => flux tube (kinky string)✗

✖
✔
✕

String segments with high pt escape => corona,
the others form the core = initial condition for hydro

depending on the local string density
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Core:

(we use α and β rather than σ and τ )

We split each string into a sequence of string segments, correspond-
ing to widths δα and δβ in the string parameter space

Picture is schematic: the
string extends well into
the transverse dimen-
sion, correctly taken into
account in the calcula-
tions z

t

X(  ,  )α β

X(α+δα,β+δβ)
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Energy momentum tensor and the flavor flow vector at some
position x at initial proper time τ = τ0:

Tµν(x) = ∑
i

δp
µ
i δpν

i

δp0
i

g(x − xi),

N
µ
q (x) = ∑

i

δp
µ
i

δp0
i

qi g(x − xi),

q ∈ u, d, s: net flavor content of the string segments

δp =
{

∂X(α,β)
∂β δα + ∂X(α,β)

∂α δβ
}

: four-momenta of the segments.

g: Gaussian smoothing kernel with a transverse width σ⊥

The Lorentz transformation into the comoving frame provides the en-

ergy density ε and the flow velocity components vi.
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5.2 Hydrodynamic evolution

The evolution of the system for τ ≥ τ0 treated
macroscopicly, solving the equations of
relativistic hydrodynamics:

Three equations concerning conserved currents:

∂νNν
q = 0

with Nν
q = nq uν

and nq (q =u ,d, s) representing (net) quark densities, uν is

the velocity four vector.
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Four equations concerning energy-momentum conserva-

tion:

∂νTµν = 0.

The energy-momentum tensor Tµν is

� the flux of the µth component of the momentum vector

� across a surface with constant ν coordinate (using four-
vectors)
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T00: Energy density dE/dx1dx2dx3 (x0 const)

T01: Energy flux dE/dx0dx2dx3 (x1 const)

T i0: Momentum density

T ij: Momentum flux
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The equation

∂νTµν = 0
is very general, no need for thermal equilibrium, no need
for particles.

The energy-momentum tensor is

the conserved Noether current

associated with space-time translations.
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� We have 4 + n f equations, so we should express T in
terms of 4 quantities (unknowns)

� and/or find additional equations

� which means additional assumptions
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First approach: Ideal Fluid

In the local rest frame of a fluid cell:

� T00 = ε (energy density in LRF)

� T0i = 0 (no energy flow)

� T0i = 0 (no momenum in LRF)

� Tij = δij p (p = isotropic pressure)
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In arbitrary frame:

Tµν = (ε + p)uµuν − pgµν

+ Equation of state p = p(ε) of QGP from lQCD

=> 4 equations for 4 unknowns (ε, velocity)
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Other way of writing T:

Tµν = εuµuν − p∆µν

with ∆ being the projector ⊥ to u (∆µνuν = 0):

∆µν = gµν − uµuν
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Including viscous effects, following Landau:

Navier Stokes equations (with shear and bulk viscosity η, ζ ):

Tµν = εuµuν − (p + Π) ∆µν + πµν

πµν = π
µν
NS = 2η ∇〈µuν〉,

Π = ΠNS = −ζ ∇αuα

A〈µ Bν〉 =
1
2

(

∆α
µ∆

β
ν + ∆α

ν∆
β
µ − 2

3∆αβ∆µν

)

AαBβ, ∇µ = ∆µν∂ν

πµν, Π shear stress tensor, bulk pressure
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NS does not work:

� instabilities due to acausal behavior

� Solution : Mueller-Israel-Steward (MIS) approach
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Some math: Covariant derivative ∂;i

Scalar function: ∂;i f = ∂i f

Basis vectors ej : ∂;iej = Γk
ijek

Any vector (using product law):

∂;i

(
ujej

)
=
(
∂;iu

j
)

ej + uj∂;iej

=
(
∂iu

j
)

ej + ujΓk
ijek

(

∂iu
j + Γ

j
ikuk
)

ej

︸ ︷︷ ︸

∂;iu
j
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Tensor rank 2 :

∂;i (t
mnemen)

= (∂;it
mn) emen + tmn (∂;iem) en + tmnem (∂;ien)

= (∂it
mn) emen + tmn

(

Γk
imek

)

en + tmnem

(

Γk
inek

)

=
(

∂it
mn + Γm

iktkn + Γn
iktmk

)

emen

︸ ︷︷ ︸

∂;it
nm
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Mueller-Israel-Steward (MIS) approach
(second order + π and Π dynamical quantities, governed by relaxation equations)

∂;νTµν = ∂νTµν + Γ
µ
νλTνλ + Γν

νλTµλ = 0

(Christoffel symbols: Γλ
µν = 1

2 gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) )

The energy-momentum tensor may be expressed via a systematic ex-
pansion in terms of gradients (of ln ε and u):

Tµν = T
µν

(0)
+ T

µν

(1)
+ T

µν

(2)
+ ...,

with the “equilibrium term” T
µν

(0)
= ǫuµuν − p∆µν, where ∆µν = gµν −

uµuν is the projector orthogonal to uµ.
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One usually writes

Tµν = T
µν

(0)
− Π∆µν + πµν. (2)

(shear stress tensor, bulk pressure). Mueller-Israel-Steward (MIS) the-
ory: Promote π and Π to dynamical quantities, governed by relaxation
equations

πµν = π
µν
NS + τπ

(
−Dπµν + I

µν
π

)
,

Π = ΠNS + τΠ (−DΠ + IΠ)

with D = uµ∂µ. Details concerning second order expressions see Paul
Romatschke and Ulrike Romatschke, arXiv:1712.05815. Different choices
for the I.
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EPOS implementation (Yuri Karpenko)

Milne coordinates:

η =
1

2
ln

t + z

t − z

τ =
√

t2 − z2

Metric tensor:
gµν = diag(1,−1,−1,−1/τ2).

Nonzero Christoffel symbols:

Γ
η
τη = Γ

η
ητ = 1/τ, Γτ

ηη = τ.

(Γλ
µν = 1

2 gλρ(∂µgρν + ∂νgρµ − ∂ρgµν)). The hydrodynamic equations (using
covariant drivatives):

∂;νTµν = ∂νTµν + Γ
µ
νλTνλ + Γν

νλTµλ = 0
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Freeze out

happens at a hypersurface defined by T = TH (for given TH).

Hyper-surface: xµ = xµ(τ, ϕ, η):

x0 = τ cosh η, x1 = r cos ϕ, x2 = r sin ϕ, x3 = τ sinh η,

with r = r(τ, ϕ, η).

The hypersurface element is

dΣµ = εµνκλ
∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτdϕdη,

(with ε0123 = 1)
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Computing the derivatives, one gets:

dΣ0 =

{

−r
∂r

∂τ
τ cosh η + r

∂r

∂η
sinh η

}

dτdϕdη,

dΣ1 =

{
∂r

∂ϕ
τ sin ϕ + r τ cos ϕ

}

dτdϕdη,

dΣ2 =

{

− ∂r

∂ϕ
τ cos ϕ + r τ sin ϕ

}

dτdϕdη,

dΣ3 =

{

r
∂r

∂τ
τ sinh η − r

∂r

∂η
cosh η

}

dτdϕdη.
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Cooper-Frye hadronization amounts to calculating

E
dn

d3 p
=
∫

dΣµ pµ f (up),

with u being the flow four-velocity in the global frame, related to Milne
fram via

u0 = ũ 0 cosh η + ũ 3 sinh η ,

u1 = ũ 1 ,

u2 = ũ 2 ,

u3 = ũ 0 sinh η + ũ 3 cosh η .

Similarly p expressed in terms of p̃ in the Milne frame.

f is the Bose-Einstein or Fermi-Dirac distribution.
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Hadronic afterburner: UrQMD

After “hadronization” hadrons follow straight and may still interact
via

h1 + h2 → ∑
j

h′j

We use “UrQMD”.

M. Bleicher et al., J. Phys. G25 (1999) 1859;

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C78
(2008) 044901
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5.3 New trends on the foundations
of hydrodynamics

� A systematic way get the equations of relativistic hy-

drodynamics is via a formal gradient expansion of

Tµν (in terms of gradients (of ln ε and u)

� The hydrodynamic gradient expansion has

(probably) a vanishing radius of convergence

� Good news: There are tools to deal with that. Need

to go beyond perturbative expansions.
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New trends :

� Resurgence theory => go beyond the case of “small

gradients” (close to equilibrium).

� Systematic treatment of divergent power series, meth-

ods to include exponential corrections (“instantons”).

Jean Ecalle (1981)

� Applied to hydrodynamics by several authors (Michal
P. Heller, Michal Spalinski, Phys. Rev. Lett. 115, 072501 (2015); Paul Ro-
matschke and Ulrike Romatschke, arXiv:1712.05815; Buchel, Michal P. Heller,
Jorge Noronha Phys. Rev. D 94, 106011 (2016) )
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Truncated conformal Bjorken hydrodyn.

Mueller-Israel-Steward (MIS) approach
(second order + shear stress tensor π and bulk pressure Π dynamical quantities,
governed by relaxation equations)

+ imposing scale and boost invariance,

Michal P. Heller, M. Spalinski, Phys. Rev. Lett. 115, 072501 (2015)

τǫ̇ = −4

3
ǫ + φ, τπφ̇ =

4η

3τ
− λ1φ2

2η2
− 4τπφ

3τ
− φ,

with φ = −π
y
y shear stress.

Equation considered (per def.) complete (not expansion),
but one is investigating perturbative solutions.
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With ǫ = T4, τπ = Cτπ/T, λ1 = Cλ1
η/T, η = Cηs, defining

w and f as

w(τ) = τT, f (w) = τ
ẇ

w

=> diff. equation (DE) for f (w)

Cτπw f f ′ + 4Cτπ f 2 +

(

w − 16Cτπ

3

)

f

−4Cη

9
+

16Cτπ

9
− 2w

3
= 0.

w = τ2/3 for ideal hydro.
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Perturbative solution: series in powers of w−1

f =
∞

∑
n=0

anw−n,

called hydrodynamical expansion for large w
(large times), coefficients obtained from DE:

an ∼ n!

so the series is divergent.
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Solving the equation numerically => attractor

well defined solutions
even at small w (small
times),

contrary to the pertur-
bative expansion.

=> well defined solu-
tions “far off equilib-
rium”

Picture from Heller, M. Spalinski.
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Resummation

(a very systematic approch for divergent series)

f =
∞

∑
n=0

anw−n,

(computed up to n = N = 200) is Borel transformed

fB(x) =
∞

∑
n=0

an
xn

n!
=

∞

∑
n=0

Bnxn,

has a finite radius of convergence.
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The inverse Borel transform is

fiB(w) = w
∫ ∞

0
fB(x)e

−wxdx.

Analytic continuation of fB via Padé approximants having
a sequence of singularities

fPB(x) = h0(x) + (a − x)γh1(x) + (2a − x)2γh1(x) + ...

These branch-cut singularities

=> ambiguities (for large w) of the form

w−mγe−maw



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 189

This ambiguity = feature of the hydrodynamic series

indication of physics outside the grad expansion.

The solution should have the form of a trans-series

f (w) =
∞

∑
m=0

cm w−mγe−maw fm(w)

with perturbative series fm,
get coeficients by substituting the trans-series into the DE, then same procedure

=> unique result called “resummation result”
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One finds (on percent level):

Resummed result

= Hydrodynamical attractor

both being in general quite different compared to the per-
turbative expansions
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What do these “resummation” results tell us?

� Hydro may be applicable even far off equilibrium

(in particular relevant for small systems)

� => True solution : Hydrodynamic attractor

Accessible (in principle) via resummation

� Frequently asked question:

“Why do small systems thermalize so quickly?”

Maybe they simply don´t ...
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5.4 Microcanonical hadronization

� No need to match dynamical part

� Energy and flavor conservation

for small systems

� Needed to “unify” EPOSLHC and EPOS3
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Grand canonical decay, T = 130 MeV

V=50 fm3; V=1000 fm3

0

2.5

5

7.5

0.5 1 1.5

X =  E / <E>

dN
/d

X
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Microcanonical hadronization in EPOS
(very preliminary)

Hadronization

hyper-surface

xµ(τ,ϕ, η) :

x0 = τ cosh η,

x1 = r cosϕ,

x2 = r sinϕ,

x3 = τ sinh η

with r = r(τ,ϕ, η), representing the FO condition.
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Hypersurface element:

dΣµ = εµνκλ
∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτ dϕdη.

dΣ0 =

{

−r
∂r

∂τ
τ cosh η + r

∂r

∂η
sinh η

}

dτdϕdη,

dΣ1 =

{
∂r

∂ϕ
τ sin ϕ + r τ cos ϕ

}

dτdϕdη,

dΣ2 =

{

− ∂r

∂ϕ
τ cos ϕ + r τ sin ϕ

}

dτdϕdη,

dΣ3 =

{

r
∂r

∂τ
τ sinh η − r

∂r

∂η
cosh η

}

dτdϕdη.

dΣµ
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GC particle production via Cooper-Frye

E
dn

d3 p
=
∫

dΣµ pµ f(up),

assuming that “matter” is a
thermalized resonance gas

(adding δ f for viscous hydro, close
to equilibrium)
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More general:

Flow of momentum vector dPµ and conserved charges dQA

through the surface element:

dPµ = TµνdΣν,

dQA = Jν
AdΣν.

dPµ
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Momentum and charges are conserved :

∫

ΣFO

dPµ = P
µ
ini,

∫

ΣFO

dQA = QA ini

r

τ
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Construct an effective mass by summing surface elements:

M =
∫

surface area
dM ,

with

dM =
√

dPµdPµ,

knowing for each element
four-velocity and volume el-
ement

Uµ = dPµ/dM,

dV = uµdΣµ.

The four-velocity Uµ is NOT
equal to the fluid velocity uµ!
(Only in case of zero pressure)
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These effective masses we decay microcanonically:

dP = Cvol Cdeg Cident

× δ(E − ΣEi) δ(Σ~pi) ∏
A

δQA,ΣqA i

n

∏
i=1

d3 pi,

Cvol =
Vn

(2πh̄)3n
, Cdeg =

n

∏
i=1

gi , Cident = ∏
α∈S

1

nα!
,

(nα is the number of particles of species α, S is the set of particle species)

then boost the particles according to velocities Uµ.
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Microcanonical decay

dP ∝ dΦNRPS = δ(M − ΣEi) δ(Σ~pi)
n

∏
i=1

d3pi

� Hagedorn 1958 methods to compute ΦNRPS

� Lorentz invariant phase space (LIPS) (James 1968)

� Hagedorn methods used for decaying QGP droplets
(Werner, Aichelin, 1994, Becattini 2003)

� 2012 (Bignamini,Becattini,Piccinini) compute ΦNRPS via
the Lorentz invariant phase space (LIPS)
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� Hagedorn integral method can be made very efficient

at large n, but becomes VERY time consuming at small
n

� LIPS method very fast for small n,
gets time consuming at large n

� around n ≈ 30 − 40 both methods work

(=> checks)
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Hagedorn integral method, optimized

The phase-space integral:

φNRPS(M, m1, . . . , mn)

= (4π)n
∫ n

∏
i=1

p2
i δ(E −

n

∑
i=1

Ei)W(p1, . . . , pn)
n

∏
i=1

dpi,

with the “random walk function” W given as

W(p1, . . . , pn) :=
1

(4π)n

∫

δ
( n

∑
i=1

pi ×
~pi

pi

) n

∏
i=1

dΩ
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We obtain (Werner, Aichelin 94)

φ(M, m1, . . . , mn) =
∫ 1

0
dr1 . . .

∫ 1

0
drn−1ψ(r1, ..., rn−1)

ψ =
(4π)n Tn−1

(n − 1)!

n

∏
i=1

pi Ei W(p1, . . . , pn),

with zi = r1/i
i , xi = zixi+1, si = xiT, ti = si − si−1,

Ei = ti + mi, T = M − ∑
n
i=1 mi

Suitable for MC
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The random walk function may be written as

W(p1, . . . , pn) =
1

(4π)n

1

(2π)3

∫ ∫

e−i~λΣpj p̂j

n

∏
j=1

dΩj d3λ,

which gives W =
∫ ∞

0
F(λ) dλ with

F(λ) =
1

2π2
λ2

n

∏
j=1

sin pjλ

pjλ
.

For small λ :

n

∏
j=1

sin pjλ

pjλ
≈ exp

(
−P2λ2

)
, P =

√
√
√
√

1

6

n

∑
j=1

p 2
j
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Approximation is stricly true for small λ, but for large n

it provides a good approximation over the whole range

of λ
=> estimate W ≈

(
4πP2

)−3/2

In order to get more precise results, we define

F0(λ) = F(λ)× exp
(
P2λ2

)
,

with F0/λ2 being a slowly varying function of λ.
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This allows to use the Gauss-Hermite formula

W =
1

P

∫
∞

0
F0

( x

P

)

× exp
(
−x2

)
dx

≈ 1

P

K

∑
k=1

wGH
j F0

(

xGH
j

P

)

,

with Gauss-Hermite nodes and weights xGH
j and wGH

j

found in text books.

With only six nodes we get excellent results.
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Sampling via Markov chains

To generate K = {h1, . . . , hn; r1, ...rm} (m = 3n − 1 or m = 3n − 4)

according to Ω(K), consider random configurations

K0 , K1 , K2, ...

with Ωt being the law for Kt. Per def

Ωt+1(B) = ∑
A

Ωt(A) p(A → B)

Convergence in case of detailled balance:

Ω(A) p(A → B) = Ω(B) p(B → A)
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Use

p(A → B) = wAB × uAB ,

with a so-called proposal matrix w and an acceptance ma-
trix u. Detailed balance now reads

uAB

uBA
=

ΩB

ΩA

wBA

wAB
,

which is fulfilled for

uAB = min

(
ΩB

ΩA

wBA

wAB
, 1

)

(more generally using some function F fulfilling F(z)/ F(z−1) = z)



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 211

Grand canonical limit

For very large M we should recover the “grand canonical
limit” for single particle spectra:

fk =
gkV

(2πh̄)3
exp

(

−Ek

T

)

,

The average energy is

Ē =
gkV

(2πh̄)3 ∑
k

∫
∞

0
Ek exp

(

−Ek

T

)

4πp2dp

Changing variables via EkdEk = pdp, and using K1(z) = z
∫ ∞

1 exp(−zx)
√

x2 − 1dx, and

3 K2(z) = z2
∫ ∞

1 exp(−zx)
√

x2 − 1
3
dx,
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=>

Ē =
4πgkV

(2πh̄)3
m2T

(

3TK2(
m

T
) + mK1(

m

T
)
)

.

The microcanonical decay of an object of mass M and

volume V should converge (for M → ∞) to the GC sin-

gle particle spectra

with T obtained from M = Ē.
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We consider a complete (?) set of hadrons

(≈ 400, PDG list)

Comparing GC et MiC decay, we check effect of

� energy conservation

� flavor conservation
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GC decay, E/V= 0.333 GeV/fm3 T=164 MeV
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GC+MiC decay, E/V= 0.333 GeV/fm3 M=200 GeV

10
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×1
4

good test for
Metropolis proposal
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GC+MiC decay, E/V= 0.333 GeV/fm3 M=100 GeV
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GC+MiC decay, E/V= 0.333 GeV/fm3 M=50 GeV
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GC+MiC decay, E/V= 0.333 GeV/fm3 M=25 GeV
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GC+MiC decay, E/V= 0.333 GeV/fm3 M=12.5 GeV
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GC+MiC decay, E/V= 0.333 GeV/fm3 M=6.25 GeV
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Status on microcanonical hadronization:

� Reliable and fast methods,

even for large systems

� Very recently: works for complete hadron set

� Todo:

– Implementation to do hadronization for “flowing”

plasma
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—————————————————————

6 Flow in small systems

—————————————————————

=> comparing models

with / without collectivity built in
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pPb results (more results: arXiv:1312.1233)

We will compare EPOS3 with data

and also with

EPOS LHC
LHC tune of EPOS1.99, :
same GR, but uses parameterized flow
T. Pierog et al, arXiv:1306.5413

AMPT
Parton + hadron cascade -> some collectivity
Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005).

QGSJET
GR approach, no flow
S. Ostapchenko, Phys. Rev. D74 (2006) 014026
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CMS: Multiplicity dependence

of pion, kaon, proton pt spectra

CMS, arXiv:1307.3442

We plot 4 centrality classes:
〈

Noffline
trk

〉
= 8, 84, 160, 235 (in |η| < 2.4)

Multiplicity = centrality measure
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ALICE: compare pt spectra for identified particles in different mul-
tiplicity classes: 0-5%,...,60-80%
(in 2.8 < ηlab < 5.1) From R. Preghenella, ALICE, talk Trento workshop 2013

Useful : ratios (K/pi, p/pi...)
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Significant variation of lambda/K – like in PbPb
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No multiplicity dependence (not trivial to get the peripheral right)
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Significant multiplicity dependence. Flow helps
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v2 in PbPb

from central

to peripheral

Changes

smoothly

towards

peripheral

=>

physics changes

smoothly
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with EPOS

simulations

Flow is

needed

even for

peripheral

collisions!
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“Ridges” in pA

ALICE, arXiv:1212.2001, arXiv:1307.3237
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Central - peripheral (to get rid of jets)
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Identified particle v2
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mass splitting, as in PbPb !!!
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pPb in EPOS3:

Pomerons (number and positions)
characterize geometry (P. number ∝ multiplicity)

random

azimuthal

asymmetry

=>

asymmetric flow

seen at higher pt for

heavier ptls
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v2 for ß, K, p clearly differ

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.5 1 1.5 2 2.5
 pt

 v
2

EPOS3.074
π
K
p

ALICE
π
K
p

mass splitting, due to flow
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—————————————————————

7 Recent developments

—————————————————————

(Saturation, strangeness and charm enhancement with
multiplicity)
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Reminder :

σtot = ∑
cut P

∫

∑
uncut P

∫

A

B

uncut
−G

cut
G

︸ ︷︷ ︸dσexclusive

=
= remnant

nucleon

nucleon

parton ladders

=> kinky
strings
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Non-linear effects

Computing the expressions G for single Pomerons:
A cutoff Q0 is needed (for the DGLAP integrals).

Taking Q0 constant leads to a power law increase
of cross sections vs energy (=> wrong)

because non-linear effects like
gluon fusion are not taken into
account

ladder partons

nucleon
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Solution: Instead of a constant Q0, use a dynamical satu-

ration scale for each Pomeron:

Qs = Qs(NIP, sIP)

with

NIP = number of Pomerons connected to a
given Pomeron (whose probability distribution

depends on Qs)

sIP = energy of considered Pomeron nu
cl

eo
ns

nu
cl

eo
ns
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We get Qs(NIP, sIP) from fitting

� the energy dependence of elementary quantities (σtot,
σel, σSD, dnch/dη(0)) for pp

� the multiplicity dependence of dnπ/dpt

at large pt for pp at 7 TeV

We find

Qs ∝
√

NIP × (sIP)
0.30

CGC for AA:
Qs ∝ Npart × (1/x)0.30
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Parton distributions

dn/dp

p

t

t

small Qs

large Qs

Increasing multiplicity
=> increasing NPom

=> Increasing Qs

=> harder Pomerons
=> harder strings

=>

=> more high pt particles

=> Strong increase of 〈pt〉 with multiplicity
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These saturation effects concern the corona !

What about multiplicity dependence of

core-corona separation ?

� First check particle ratios
(core-corona)

� Then mean pt vs multiplicity
(core-corona+saturation)

We compare simulations to ALICE data
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Particle ratios to pions vs
〈

dnch
dη (0)

〉
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Ω

Ξ*

Ωx8 Ξx3  K*x2.3

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)

Refs: next slide
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Mean pt vs
〈

dnch
dη (0)

〉

1
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 <dnch/dη(0)>
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p t> ALICE data
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π
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<
p 

> t

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)

Data partly collected by A. G. Knospe
Refs:
<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011)
pi+-, K+-, and (anti)protons in Pb+Pb: Phys. Rev. C 88 044910 (2013)
Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013)
Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
pi+-, K+-, (anti)protons, and Lambda in p+Pb: Phys. Lett. B 728
25-38 (2014)
<dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016)
Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
<dNch/deta> in p+p 7 TeV: Eur. Phys. J. C 68 345-354 (2010)
pi+-, K+-, and (anti)protons in p+p 7 TeV: Eur. Phys. J. C 75 226
(2015)
Xi- and Omega in p+p 7 TeV: Phys. Lett. B 712 309 (2012)
and data points from Rafael Derradi de Souza, SQM2016
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D or J/Ψ multiplicity vs
dnch
dη (0) in pp
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pp  200GeV data
STAR
J/Psi

pt>4GeV/c

STAR, shown at MPI2016

strongly nonlinear increase
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Core-corona picture in EPOS

Gribov-Regge approach => (Many) kinky strings
=> core/corona separation (based on string segments)

central AA

peripheral AA
high mult pp low mult pp

core => hydro => statistical decay (µ = 0)
corona => string decay
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Pion yields: core / corona contribution
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hc = hadronic cascade

(UrQMD)
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Proton to pion ratio
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T = 164 MeV, µB = 0

statistical model fit
(horizontal black line)
A. Andronic et al.,

arXiv:1611.01347

T = 156.5 MeV, µB = 0.7 MeV

thick lines = pp (7TeV)

thin lines = pPb (5TeV)

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)
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Omega to pion ratio
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Kaon to pion ratio

10
-2

10
-1

1 10 10
2

10
3

 <dnch/dη(0)>

 r
at

io
 to

 π ALICE (black)
K

EPOS 3.210

full
co+co
corona
core

thick lines = pp (7TeV)

thin lines = pPb (5TeV)

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)



37th Joliot-Curie School 11+12 October 2018 # Klaus Werner # Subatech, Nantes 253

Lambda to pion ratio
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Xi to pion ratio
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Ratios h/π for h = p, K, Λ, Ξ, Ω vs
〈

dn
dη(0)

〉

:

Core and corona contributions separately roughly

constant

Difference (core - corona) increasing for p → K →

=> inceasing slope
(not enough for Ξ, Ω)
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Average pt of protons
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Average pt of Omegas
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Average pt of lambdas
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Average pt of kaons
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Average pt of K, p, Λ, Ξ, Ω vs
〈

dn
dη(0)

〉

:

Moderate increase of core contribution
(same for pp and pPb, similar to PbPb)

Strong increase of corona contribution
(stronger for pp than for pPb, much stronger than for PbPb)

Slope(pp) > slope(pPb) >> slope(PbPb)

K, π : pp-pPb splitting

The multiplicity dependence of the corona con-

tribution is crucial
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Very closely related to this discussion:

The multiplicity dependence

of charm production (D, J/Ψ,...)

The “ultimate tool” to test multiple scat-

tering (and the implementation of QS)
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EPOS 3 compared to ALICE data
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EPOS 3 compared to RHIC data
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stronger

than at LHC
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Multiplicity at FB rapidity (LHC)
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Low

multi-

plicity

(LM)

Small
NPom

few soft IP’s IP = Pomeron

“Hardness”
increases

with NPom

(larger Qs)

High

multi-

plicity

(HM)

many

hard IP’s

on avg

(A) more IP’s, but less hard (B) fewer IP’s, but harder
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LM → HM:

Pomerons get harder (larger Qs)

→ favors high pt or large masse production

in particular due to case B (fewer IP’s, but harder)

for highest pt bins !

Bigger effect at RHIC due to much narrower NPom dis-

tribution (harder IP’s are needed)

Smaller effect for dn
dη(FB) as multipl. variable

(case B is replaced by case C: fewer IP’s, but more covering the FB
rapidity range)


