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Introduction Renormalisation Summary

Plan of lectures

0. Brief introduction

1. Renormalisation, running coupling, running masses
scale dependence of observables

2. e+e− → hadrons
some basics of applied perturbation theory

3. Factorisation and parton densities
using perturbation theory in ep and pp collisions

4. GPDs and exclusive processes
a more detailed look into proton structure

5. TMDs
probing the transverse momentum of partons

6. Double parton scattering
a new case for factorisation
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Some references for all lectures:

I more on short-distance factorization
J Collins, hep-ph/9907513 and hep-ph/0107252

J Collins, Foundations of Perturbative QCD, CUP 2011

I short overview of GPDs and TMDS
MD, arXiv:1512.01328

I full bibliography for GPDs e.g. in reviews
S Boffi and B Pasquini, arXiv:0711.2625

A Belitsky and A Radyushkin, hep-ph/0504030

MD, hep-ph/0307382

K Goeke et al., hep-ph/0106012

I overviews of TMDs
A Bacchetta et al., hep-ph/0611265

S Mert Aybat and T Rogers, arXiv:1101.5057

T Rogers, arXiv:1509.04766
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Some references for all lectures:

I more on short-distance factorization
J Collins, hep-ph/9907513 and hep-ph/0107252

J Collins, Foundations of Perturbative QCD, CUP 2011

I multiparton interactions
Multiple Parton Interactions at LHC, eds. P Bartalini and J Gaunt, 2018

https://doi.org/10.1142/10646 (individual chapters on arXiv)

MD, summer school lectures (2014)

https://indico.in2p3.fr/event/9917/other-view?view=standard
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Quantum chromodynamics (QCD)

I theory of interactions between quarks and gluons

I very different from weak and electromagnetic interactions
because coupling αs is large at small momentum scales

• quarks and gluons are confined inside bound states:
hadrons (proton, neutron, pion, . . . )

• perturbative expansion in αs only at high momentum scales

I symmetries

• gauge invariance: group SU(3) ↔ colour charge
electromagnetism: U(1) ↔ electric charge

• Lorentz invariance and discrete symmetries:
P (parity = space inversion) T (time reversal)

C (charge conjugation)

• chiral symmetry for zero masses of u, d and s

I embedded in Standard Model: quarks couple to γ, W , Z and H
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Why care about QCD?

I without quantitative understanding of QCD
would have very few physics results from LHC, Belle, . . .

I αs and quark masses are fundamental parameters of nature
need e.g.

• mt for precision fits in electroweak sector → Higgs physics
• αs to discuss possible unification of forces

I QCD is the one strongly interacting quantum field theory
we can study in experiment
many interesting phenomena:

• structure of proton
• confinement
• breaking of chiral symmetry
• convergence of perturbative series

M. Diehl Introduction to perturbative QCD and factorization 6



Introduction Renormalisation Summary

Basics of perturbation theory

I split Lagrangian into free and interacting parts:

LQCD = Lfree + Lint

• Lint: interaction terms ∝ g or g2

• expand process amplitudes, cross sections, etc. in g
• Feynman graphs visualise individual terms in expansion

I from Lfree: free quark and gluon propagators

• in position space: propagation from xµ to yµ

• in momentum space: propagation with four-momentum kµ

I from Lint: elementary vertices
∝ g ∝ g2∝ g
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Loop corrections

I in loop corrections find ultraviolet (UV) divergences

I only appear in corrections to
propagators elementary vertices

nF

nF

Exercise: Draw the remaining one-loop graphs for all propagators
and elementary vertices
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I origin of UV divergences: region of ∞ ly large loop momenta
↔ quantum fluctuations at ∞ ly small space-time distances

I idea: encapsulate UV effects in (a few) parameters
when describe physics at a given scale µ  renormalisation

nF

nF
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I origin of UV divergences: region of ∞ ly large loop momenta
↔ quantum fluctuations at ∞ ly small space-time distances

I idea: encapsulate UV effects in (a few) parameters
when describe physics at a given scale µ  renormalisation

I technically:

1. regulate: artificial change of theory making div. terms finite
• physically intuitive: momentum cutoff
• in practice: dimensional regularisation

2. renormalise: absorb UV effects into

• coupling constant αs(µ)
• quark masses mq(µ)
• quark and gluon fields (wave function renormalisation)

3. remove regulator: quantities are finite when expressed in terms
of renormalised parameters and fields

I renormalisation scheme: choice of which terms to absorb

“∞” is as good as “∞+ log(4π)”
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Dimensional regularisation in a nutshell

I choice of regulator ≈ choice between evils

I dim. reg.: little (any?) physics intuition, but keeps intact essential
symmetries (gauge and Lorentz invariance)

I idea: integrals for Feynman graphs become UV finite in lower
space-time dimension, e.g.∫

dDk

(2π)D
1

k2 −m2

1

(k − p)2 −m2

log. div. for D = 4
converg. for D = 3, 2, 1

I procedure:

1. formulate theory in D dimensions (with D small enough)
2. analytically continue results from integer to complex D

original divergences appear as poles in 1/ε (D = 4− 2ε)
3. renormalise
4. take ε→ 0

M. Diehl Introduction to perturbative QCD and factorization 11



Introduction Renormalisation Summary

Dimensional regularisation in a nutshell

I choice of regulator ≈ choice between evils

I dim. reg.: little (any?) physics intuition, but keeps intact essential
symmetries (gauge and Lorentz invariance)

I idea: integrals for Feynman graphs become UV finite in lower
space-time dimension, e.g.∫

dDk

(2π)D
1

k2 −m2

1

(k − p)2 −m2

log. div. for D = 4
converg. for D = 3, 2, 1

I enter: a mass scale µ

• coupling in 4− 2ε dimensions is µεg with g dimensionless
needed to get dimensionless action

∫
dDx L

• any other regularisation introduces a mass parameter as well

 renormalised quantities depend on µ
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Renormalisation group equations (RGE)

I scale dependence of renormalised quantities described by
differential equations:

d

d logµ2
αs(µ) = β

(
αs(µ)

)
d

d logµ2
mq(µ) = mq(µ)γm

(
αs(µ)

)
I β, γm = perturbatively calculable functions

in region where αs(µ) is small enough

β = −b0α2
s

[
1 + b1αs + b2α

2
s + b3α

3
s + . . .

]
γm = −c0αs

[
1 + c1αs + c2α

2
s + c3α

3
s + . . .

]
coefficients known including b4, c4 (b4 since 2016)

b0 = 1
4π

(
11− 2

3nF
)

c0 = 1
π
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The running of αs

I βQCD < 0

⇒ αs(µ) decreases with µ

Nobel prize 2004 for

Gross, Politzer and Wilczek

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  
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)
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plot: Review of Particle Properties 2018

• asymptotic freedom at large µ

• perturbative expansion becomes invalid at low µ
quarks and gluons are strongly bound inside hadrons: confinement
momenta below 1 GeV ↔ distances above 0.2 fm
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The running of αs

I truncating β = −b0α2
s(1 + b1αs) get

αs(µ) =
1

b0L
− b1 logL

(b0L)2
+O

( 1

L3

)
with L = log

µ2

Λ2
QCD

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  
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plot: Review of Particle Properties 2018

• dimensional transmutation:

mass scale ΛQCD not in Lagrangian, reflects quantum effects

• more detail  blackboard
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Scale dependence of observables

I observables computed in perturbation theory

depend on renormalisation scale µ

• implicitly through αs(µ)
• explicitly through terms ∝ log(µ2/Q2)

where Q = typical scale of process

e.g. Q = pT for production of particles with high pT
Q =MH for decay Higgs → hadrons

Q = c.m. energy for e+e− → hadrons

I µ dependence of observables must cancel
at accuracy of the computation

see how this works  blackboard
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Scale dependence of observables

I for generic observable C have expansion

C(Q) = αns (µ)

[
C0 + αs(µ)

{
C1 + nb0C0 log

µ2

Q2

}
+O

(
α2
s

)]
I Exercise: check that this satisfies

d

d logµ2
C = O

(
αn+2
s

)
⇒ residual scale dependence when truncate perturbative series

I at higher orders:

αn+ks (µ) comes with up to k powers of log(µ2/Q2)

• choose µ ∼ Q so that αs log(µ/Q)� 1
otherwise higher-order terms spoil series expansion
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Example

I inclusive hadronic decay of Higgs boson

t

H

via top quark loop (i.e. without direct coupling to b quark)

I in perturbation theory: H → 2g, H → 3g, . . .
known to N3LO Baikov, Chetyrkin 2006

 0
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]

µ /MH

LO
NLO

NNLO
NNNLO I scale dependence decreases at

higher orders

I scale variation by factor 2 up- and
downwards often taken as estimate
of higher-order corrections

I choice µ < MH more appropriate
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Quark masses

I recall: αs and mq depend on renormalisation scheme

• standard in QCD: MS scheme  running αs(µ) and mq(µ)

• for heavy quarks c, b, t can also use pole mass

def. by condition: quark propagator has pole at p2 = m2
pole

possible in perturbation theory, but in nature quarks confined

scheme transformation:

mpole = m(µ)

[
1 +

αs(µ)

π

(
4

3
− log

m2(µ)

µ2

)
+O(α2

s)

]
I MS masses from Review of Particle Properties 2018

mu = 2.2+0.5
−0.4 MeV md = 4.7+0.5

−0.3 MeV ms = 95+9
−3 MeV

at µ = 2GeV

mc = 1.275+0.025
−0.035 GeV mb = 4.18+0.04

−0.03 GeV mt = 160+5
−4 GeV

with mq(µ = mq) = mq
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Summary of part 1: renormalisation

I beyond all technicalities reflects physical idea:
eliminate details of physics at scales � scale Q of problem

I running of αs  characteristic features of QCD:

• asymptotic freedom at high scales  use perturbation theory

• strong interactions at low scales  need other methods

• introduces mass scale ΛQCD into theory

I dependence of observable on µ governed by RGE
reflects (and estimates) particular higher-order corrections

. . . but not all
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