# Introduction to perturbative QCD and factorization

Part 1

#### M. Diehl

Deutsches Elektronen-Synchroton DESY

Ecole Joliot Curie 2018





### Plan of lectures

- 0. Brief introduction
- 1. Renormalisation, running coupling, running masses scale dependence of observables
- 2.  $e^+e^- \rightarrow \text{hadrons}$ some basics of applied perturbation theory
- 3. Factorisation and parton densities using perturbation theory in ep and pp collisions
- 4. GPDs and exclusive processes a more detailed look into proton structure
- 5. TMDs

probing the transverse momentum of partons

6. Double parton scattering a new case for factorisation

#### Some references for all lectures:

- more on short-distance factorization
  - J Collins, hep-ph/9907513 and hep-ph/0107252
  - J Collins, Foundations of Perturbative QCD, CUP 2011
- short overview of GPDs and TMDS MD, arXiv:1512.01328
- full bibliography for GPDs e.g. in reviews S Boffi and B Pasquini, arXiv:0711.2625
   A Belitsky and A Radyushkin, hep-ph/0504030
   MD, hep-ph/0307382
   K Goeke et al., hep-ph/0106012
- overviews of TMDs
  - A Bacchetta et al., hep-ph/0611265
  - S Mert Aybat and T Rogers, arXiv:1101.5057
  - T Rogers, arXiv:1509.04766

#### Some references for all lectures:

- more on short-distance factorization
  - J Collins, hep-ph/9907513 and hep-ph/0107252
  - J Collins, Foundations of Perturbative QCD, CUP 2011
- multiparton interactions
  - Multiple Parton Interactions at LHC, eds. P Bartalini and J Gaunt, 2018
    - https://doi.org/10.1142/10646 (individual chapters on arXiv)
  - MD, summer school lectures (2014)

https://indico.in2p3.fr/event/9917/other-view?view=standard

# Quantum chromodynamics (QCD)

- theory of interactions between quarks and gluons
- ▶ very different from weak and electromagnetic interactions because coupling α<sub>s</sub> is large at small momentum scales
  - quarks and gluons are confined inside bound states: hadrons (proton, neutron, pion, ...)
  - perturbative expansion in  $lpha_s$  only at high momentum scales
- symmetries
  - gauge invariance: group SU(3) ↔ colour charge electromagnetism: U(1) ↔ electric charge
  - Lorentz invariance and discrete symmetries:
    - P (parity = space inversion) T (time reversal)
    - C (charge conjugation)
  - chiral symmetry for zero masses of u, d and s
- embedded in Standard Model: quarks couple to  $\gamma$ , W, Z and H

# Why care about QCD?

- without quantitative understanding of QCD would have very few physics results from LHC, Belle, ....
- $\blacktriangleright$   $\alpha_s$  and quark masses are fundamental parameters of nature need e.g.
  - $m_t$  for precision fits in electroweak sector  $\rightarrow$  Higgs physics
  - $\alpha_s$  to discuss possible unification of forces
- QCD is the one strongly interacting quantum field theory we can study in experiment many interesting phenomena:
  - structure of proton
  - confinement
  - breaking of chiral symmetry
  - convergence of perturbative series

# Basics of perturbation theory

split Lagrangian into free and interacting parts:

 $\mathcal{L}_{\mathsf{QCD}} = \mathcal{L}_{\mathsf{free}} + \mathcal{L}_{\mathsf{int}}$ 

- $\mathcal{L}_{\mathsf{int}}$ : interaction terms  $\propto g$  or  $g^2$
- expand process amplitudes, cross sections, etc. in g
- Feynman graphs visualise individual terms in expansion
- from  $\mathcal{L}_{free}$ : free quark and gluon propagators
  - in position space: propagation from  $x^{\mu}$  to  $y^{\mu}$
  - in momentum space: propagation with four-momentum  $k^{\mu}$

00000000000

▶ from *L*<sub>int</sub>: elementary vertices



#### Loop corrections

- ▶ in loop corrections find ultraviolet (UV) divergences
- only appear in corrections to elementary vertices propagators ್ರಿಯಾಂ 000000  $n_F$ Jour ത്ത 0000 0000  $n_F$

Exercise: Draw the remaining one-loop graphs for all propagators and elementary vertices

- ▶ origin of UV divergences: region of  $\infty$  ly large loop momenta  $\leftrightarrow$  quantum fluctuations at  $\infty$  ly small space-time distances
- ▶ idea: encapsulate UV effects in (a few) parameters when describe physics at a given scale  $\mu \rightsquigarrow$  renormalisation



- ▶ origin of UV divergences: region of  $\infty$  ly large loop momenta  $\leftrightarrow$  quantum fluctuations at  $\infty$  ly small space-time distances
- ▶ idea: encapsulate UV effects in (a few) parameters when describe physics at a given scale  $\mu \rightsquigarrow$  renormalisation
- technically:
  - 1. regulate: artificial change of theory making div. terms finite
    - physically intuitive: momentum cutoff
    - in practice: dimensional regularisation
  - 2. renormalise: absorb UV effects into
    - coupling constant  $\alpha_s(\mu)$
    - quark masses  $m_q(\mu)$
    - quark and gluon fields (wave function renormalisation)
  - 3. remove regulator: quantities are finite when expressed in terms of renormalised parameters and fields
- ▶ renormalisation scheme: choice of which terms to absorb "∞" is as good as "∞  $+ \log(4\pi)$ "

# Dimensional regularisation in a nutshell

- choice of regulator  $\approx$  choice between evils
- dim. reg.: little (any?) physics intuition, but keeps intact essential symmetries (gauge and Lorentz invariance)
- idea: integrals for Feynman graphs become UV finite in lower space-time dimension, e.g.

procedure:

- 1. formulate theory in D dimensions (with D small enough)
- 2. analytically continue results from integer to complex D original divergences appear as poles in  $1/\epsilon$   $(D = 4 2\epsilon)$
- 3. renormalise
- 4. take  $\epsilon \to 0$

### Dimensional regularisation in a nutshell

- $\blacktriangleright$  choice of regulator  $\approx$  choice between evils
- dim. reg.: little (any?) physics intuition, but keeps intact essential symmetries (gauge and Lorentz invariance)
- idea: integrals for Feynman graphs become UV finite in lower space-time dimension, e.g.

- enter: a mass scale  $\mu$ 
  - coupling in 4 − 2ε dimensions is μ<sup>ε</sup>g with g dimensionless needed to get dimensionless action ∫ d<sup>D</sup>x L
  - any other regularisation introduces a mass parameter as well

 $\leadsto$  renormalised quantities depend on  $\mu$ 

# Renormalisation group equations (RGE)

 scale dependence of renormalised quantities described by differential equations:

$$\frac{d}{d\log\mu^2} \alpha_s(\mu) = \beta \left( \alpha_s(\mu) \right)$$
$$\frac{d}{d\log\mu^2} m_q(\mu) = m_q(\mu) \gamma_m \left( \alpha_s(\mu) \right)$$

▶  $\beta$ ,  $\gamma_m$  = perturbatively calculable functions in region where  $\alpha_s(\mu)$  is small enough

$$\beta = -b_0 \alpha_s^2 \left[ 1 + b_1 \alpha_s + b_2 \alpha_s^2 + b_3 \alpha_s^3 + \dots \right]$$
  
$$\gamma_m = -c_0 \alpha_s \left[ 1 + c_1 \alpha_s + c_2 \alpha_s^2 + c_3 \alpha_s^3 + \dots \right]$$

coefficients known including  $b_4, c_4$  ( $b_4$  since 2016)

$$b_0 = \frac{1}{4\pi} \left( 11 - \frac{2}{3} n_F \right) \qquad \qquad c_0 = \frac{1}{\pi}$$

# The running of $\alpha_s$

•  $\beta_{\text{QCD}} < 0$  $\Rightarrow \alpha_s(\mu)$  decreases with  $\mu$ 





plot: Review of Particle Properties 2018

- asymptotic freedom at large  $\mu$
- perturbative expansion becomes invalid at low μ quarks and gluons are strongly bound inside hadrons: confinement momenta below 1 GeV ↔ distances above 0.2 fm

### The running of $\alpha_s$

• truncating 
$$\beta = -b_0 \alpha_s^2 (1 + b_1 \alpha_s)$$
 get

$$\label{eq:asymp_state} \begin{split} \alpha_s(\mu) &= \frac{1}{b_0 L} - \frac{b_1 \log L}{(b_0 L)^2} + \mathcal{O}\Big(\frac{1}{L^3}\Big) \end{split}$$
 with  $L = \log \frac{\mu^2}{\Lambda_{\rm QCD}^2}$ 



#### plot: Review of Particle Properties 2018

#### • dimensional transmutation:

mass scale  $\Lambda_{\text{QCD}}$  not in Lagrangian, reflects quantum effects

more detail ~> blackboard

# Scale dependence of observables

- $\blacktriangleright$  observables computed in perturbation theory depend on renormalisation scale  $\mu$ 
  - implicitly through  $\alpha_s(\mu)$
  - explicitly through terms  $\propto \log(\mu^2/Q^2)$  where Q = typical scale of process
    - e.g.  $Q = p_T$  for production of particles with high  $p_T$   $Q = M_H$  for decay Higgs  $\rightarrow$  hadrons  $Q = \text{c.m. energy for } e^+e^- \rightarrow$  hadrons
  - $\blacktriangleright$   $\mu$  dependence of observables must cancel at accuracy of the computation

see how this works  $\rightsquigarrow$  blackboard



### Scale dependence of observables

 $\blacktriangleright$  for generic observable C have expansion

$$C(Q) = \alpha_s^n(\mu) \left[ C_0 + \alpha_s(\mu) \left\{ C_1 + nb_0 C_0 \log \frac{\mu^2}{Q^2} \right\} + \mathcal{O}(\alpha_s^2) \right]$$

Exercise: check that this satisfies

$$\frac{d}{d\log\mu^2}C = \mathcal{O}\big(\alpha_s^{n+2}\big)$$

 $\Rightarrow$  residual scale dependence when truncate perturbative series

at higher orders:

 $\alpha_s^{n+k}(\mu)$  comes with up to k powers of  $\log(\mu^2/Q^2)$ 

• choose  $\mu \sim Q$  so that  $\alpha_s \log(\mu/Q) \ll 1$  otherwise higher-order terms spoil series expansion

| Introduction<br>000 | Renormalisation<br>000000000 | Summary<br>O |
|---------------------|------------------------------|--------------|
| Example             |                              |              |
|                     |                              | 000000       |

- inclusive hadronic decay of Higgs boson
   via top quark loop (i.e. without direct coupling to b quark)
- ► in perturbation theory:  $H \rightarrow 2g$ ,  $H \rightarrow 3g$ , ... known to N<sup>3</sup>LO Baikov, Chetyrkin 2006



- scale dependence decreases at higher orders
- scale variation by factor 2 up- and downwards often taken as estimate of higher-order corrections
- choice  $\mu < M_H$  more appropriate

#### Quark masses

- ▶ recall:  $\alpha_s$  and  $m_q$  depend on renormalisation scheme
  - standard in QCD:  $\overline{\text{MS}}$  scheme  $\rightsquigarrow$  running  $\alpha_s(\mu)$  and  $m_q(\mu)$
  - for heavy quarks c, b, t can also use pole mass def. by condition: quark propagator has pole at  $p^2 = m_{pole}^2$ possible in perturbation theory, but in nature quarks confined scheme transformation:

$$m_{\text{pole}} = m(\mu) \left[ 1 + \frac{\alpha_s(\mu)}{\pi} \left( \frac{4}{3} - \log \frac{m^2(\mu)}{\mu^2} \right) + \mathcal{O}(\alpha_s^2) \right]$$

▶ MS masses from Review of Particle Properties 2018

$$m_u = 2.2^{+0.5}_{-0.4} \text{ MeV}$$
  $m_d = 4.7^{+0.5}_{-0.3} \text{ MeV}$   $m_s = 95^{+9}_{-3} \text{ MeV}$   
at  $\mu = 2 \text{ GeV}$ 

$$\overline{m}_{c} = 1.275^{+0.025}_{-0.035} \text{ GeV} \quad \overline{m}_{b} = 4.18^{+0.04}_{-0.03} \text{ GeV} \quad \overline{m}_{t} = 160^{+5}_{-4} \text{ GeV}$$
with  $m_{q}(\mu = \overline{m}_{q}) = \overline{m}_{q}$ 

### Summary of part 1: renormalisation

- ▶ beyond all technicalities reflects physical idea: eliminate details of physics at scales ≫ scale Q of problem
- running of  $\alpha_s \rightsquigarrow$  characteristic features of QCD:
  - asymptotic freedom at high scales  $\rightsquigarrow$  use perturbation theory
  - strong interactions at low scales → need other methods
  - introduces mass scale  $\Lambda_{\text{QCD}}$  into theory
- dependence of observable on µ governed by RGE reflects (and estimates) particular higher-order corrections
   ... but not all