Introduction to perturbative QCD and factorization

Part 2: $e^+e^- \rightarrow \text{hadrons}$

M. Diehl

Deutsches Elektronen-Synchroton DESY

Ecole Joliot Curie 2018

$e^+e^- \rightarrow \text{hadrons}$

$$R = \frac{\sigma(e^+e^- \to X)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

for $\sqrt{s} \gg \text{resonance}$ masses

plot: Review of Particle Properties 2018

- \blacktriangleright removing electroweak part $\leadsto \sum\limits_{V} |\mathcal{A}(\gamma^* \, \text{or} \, Z^* \to X)|^2$
- among simplest applications of perturbative QCD

 - fully inclusive final state
 no hadrons in initial state
- closely related theory description for

at lowest order in α_s :

$$R_0 = N_c \sum_q e_q^2$$

from $\gamma^* \to q\bar{q}$ with $m_q = 0$

- lacktriangle expansion known up to $R=R_0\left[1+rac{1}{\pi}lpha_s+C_2lpha_s^2+C_3lpha_s^3+C_4lpha_s^4
 ight]$
 - quark mass corrections also partly known
 - ightharpoonup same for au decays
 - suitable observables for α_s determination
- underlying concept: parton-hadron duality:

$$\sum_{X \in \mathsf{partons}} |\mathcal{A}(\gamma^* \to X)|^2 = \sum_{X \in \mathsf{hadrons}} |\mathcal{A}(\gamma^* \to X)|^2$$

- $\gamma^* \to {
 m partons}$ valid description for short space-time $\sim 1/\sqrt{s}$
- subsequent dynamics changes final state, but not inclusive rate

A closer look at the $\mathcal{O}(\alpha_s)$ corrections

lacktriangle expand $\mathcal{A}(q\bar{q}g)=g\mathcal{A}_1+\dots$ and $\mathcal{A}(q\bar{q})=\mathcal{A}_0+g^2\mathcal{A}_2+\dots$

real corrections: extra partons in final state virtual corrections: loops in \mathcal{A} or \mathcal{A}^*

- ▶ virtual corrections have UV divergences
 → standard renormalisation procedure
- real and virtual corrections: soft and collinear divergences
 - regions where gluon momentum $\rightarrow 0$ or \propto momentum of q or \bar{q}
 - cancel in sum over all graphs

A closer look at soft and collinear divergences

▶ more detail → blackboard

A closer look at soft and collinear divergences

- have soft (= IR) div. because of massless gluons same phenomenon in QED: soft photons → "IR catastrophe"
- have collinear (= mass) div. if set quark masses to zero could formally keep $m_q \neq 0$, but perturbative results not trustworthy if virtualities $\sim {\rm MeV}^2$
- divergences cancel, result dominated by large virtualities otherwise could not use parton-hadron duality

A footprint of divergence cancellation: large logarithms

- **b** both soft and collinear divergences are logarithmic: $\int dE/E \int d heta/ heta$
- fixing final-state momenta restricts integration region in real corrections, but not in virtual ones
 - for each emission get double logarithm $\propto \alpha_s \log^2(\ldots)$ "Sudakov logarithms"
 - if logarithms are large must sum them to all orders in α_s "resummation"
 - can be done analytically for certain cases
 - done by "parton showers" in Monte Carlo generators

 $e^+e^- \rightarrow hadrons$

Beyond inclusive final states: hadronic jets

- jet = "bunch of hadrons moving approx. in same direction"
- perhaps the most direct manifestation of quarks or gluons

Beyond inclusive final states: hadronic jets

- jet = "bunch of hadrons moving approx. in same direction"
- perhaps the most direct manifestation of quarks or gluons

Beyond inclusive final states: hadronic jets

- ▶ extend idea of parton-hadron duality: dynamics leading from partons (times $\sim 1/Q$) to final-state hadrons (times $\to \infty$) approx. conserves momentum (hadronisation effects $\sim {\rm GeV}$)
- to minimise theory uncertainties:
 - define hadronic jets using an algorithm that is not sensitive to collinear and soft radiation (beyond perturbative control)

"collinear and infrared safe jet algorithm"

- apply to partons in computation, to hadrons in measurement
- hadronisation corrections should then be moderate and typically decrease with jet p_T estimate using Monte Carlo generators \rightarrow lat

Summary of part 2

- perturbative calculations beyond tree level only for quantities that are IR and collinear safe and hence dominated by large virtualities
- simplest examples: total cross sections/decay rates for colourless initial states
- for differential cross sections/distributions: can have large double logarithms from soft and collinear emissions
- ► for jets in final state suitable (and unsuitable) observables exist