Introduction to perturbative QCD and factorization

Part 3: factorisation

M. Diehl

Deutsches Elektronen-Synchroton DESY

Ecole Joliot Curie 2018

Factorisation Evo	olution	Event generators	Summary
•000000000 00	00000	0	00

The parton model

description for deep inelastic scattering, Drell-Yan process, etc.

- ► fast-moving hadron \approx set of free partons (q, \bar{q}, g) with low transverse momenta
- ► physical cross section = cross section for partonic process $(\gamma^* q \rightarrow q, q\bar{q} \rightarrow \gamma^*)$ × parton densities

Deep inelastic scattering (DIS): $\ell p \rightarrow \ell X$

Drell-Yan: $pp \to \ell^+ \ell^- X$

Nobel prize 1980 for Friedman, Kendall, Taylor

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

The parton model

description for deep inelastic scattering, Drell-Yan process, etc.

- ▶ fast-moving hadron ≈ set of free partons (q, \bar{q}, g) with low transverse momenta
- ► physical cross section = cross section for partonic process $(\gamma^* q \rightarrow q, q\bar{q} \rightarrow \gamma^*)$ × parton densities

Factorisation

- implement and correct parton-model ideas in QCD
 - conditions and limitations of validity kinematics, processes, observables
 - corrections: partons interact α_s small at large scales \rightsquigarrow perturbation theory
 - definition of parton densities in QCD derive their general properties make contact with non-perturbative methods

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Example: inclusive DIS (deep inelastic scattering)

• measure in $ep \rightarrow eX$

▶ Bjorken limit: $Q^2 = -q^2 \rightarrow \infty$ at fixed $x_B = Q^2/(2p \cdot q)$

• Im
$$\mathcal{A}(\gamma^* p \to \gamma^* p) =$$

hard-scattering coefficient \otimes parton distribution

- hard-scattering coefficient $\sim \operatorname{Im} \mathcal{A}(\gamma^* q \to \gamma^* q)$ small print \to later
- parton densities (PDFs): process independent also appear in pp → ℓ⁺ℓ⁻X, γ^{*}p → jet + X, ...

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Example: DVCS (deeply virtual Compton scattering)

• exclusive cross section $\propto \left|\mathcal{A}(\gamma^*p \to \gamma p)\right|^2$ square of amplitude

- measure in $ep \rightarrow ep\gamma$
- ▶ Bjorken limit: $Q^2 = -q^2 \rightarrow \infty$ at fixed x_B and $t = (p p')^2$

 $\blacktriangleright \ \mathcal{A}(\gamma^* p \to \gamma p) =$

hard-scattering coefficient \otimes generalized parton distribution

- GPD depends on momentum fractions x, ξ and on t
- hard-scattering coefficient $\sim \mathcal{A}(\gamma^* q \rightarrow \gamma q)$

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Example: DVCS (deeply virtual Compton scattering)

• exclusive cross section $\propto \left|\mathcal{A}(\gamma^*p \to \gamma p)\right|^2$ square of amplitude

- measure in $ep \rightarrow ep\gamma$
- ▶ Bjorken limit: $Q^2 = -q^2 \rightarrow \infty$ at fixed x_B and $t = (p p')^2$

 $\blacktriangleright \ \mathcal{A}(\gamma^* p \to \gamma p) =$

hard-scattering coefficient $\,\otimes\,$ generalized parton distribution

- GPD depends on momentum fractions x, ξ and on t
- hard-scattering coefficient $\sim \mathcal{A}(\gamma^* q \to \gamma q)$ or $\mathcal{A}(\gamma^* q \bar{q} \to \gamma)$ both cases included in $\int dx$

Factorisation	Evolution	Event generators	Summary
0000000000	0000000	0	00

Interlude: DIS structure functions

 aim: separate QED/electroweak from QCD part

- leptonic tensor $L_{\mu\nu} \propto \mathcal{A}_{\ell \to \ell + \gamma^*(\mu)} \left[\mathcal{A}_{\ell \to \ell + \gamma^*(\nu)} \right]^*$
- hadronic tensor $W^{\mu\nu} \propto \mathrm{Im} \int d^4x \; e^{iqx} \left$
- $\sigma_{\ell+p\to\ell+X} \propto L_{\mu\nu} W^{\mu\nu}$

using symmetries (parity, time reversal, current conservation) get

$$W^{\mu\nu}(p,q) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x_B,Q^2) + \left(p^{\mu} - \frac{pq}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{pq}{q^2}q^{\nu}\right)F_2(x_B,Q^2)$$

for unpolarised proton and electromagnetic current

 $\rightsquigarrow \sigma_{\ell+p \rightarrow \ell+X}$ expressed through F_1 and F_2

▶ analogs for SIDIS $\ell + p \rightarrow \ell + h + X$, Drell-Yan, etc.

0000000 0000000000000000000000000000000	sation	Evolution	Event generators	Summary
	0000000	0000000	0	00

Interlude: DIS structure functions

 aim: separate QED/electroweak from QCD part

- leptonic tensor $L_{\mu\nu} \propto \mathcal{A}_{\ell \to \ell + \gamma^*(\mu)} \left[\mathcal{A}_{\ell \to \ell + \gamma^*(\nu)} \right]^*$
- hadronic tensor $W^{\mu\nu}\propto {
 m Im}\int d^4x\; e^{iqx}\, \langle p|J^\mu(x)J^\nu(0)|p
 angle$
- $\sigma_{\ell+p\to\ell+X} \propto L_{\mu\nu} W^{\mu\nu}$

using symmetries (parity, time reversal, current conservation) get

$$W^{\mu\nu}(p,q) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x_B,Q^2) + \left(p^{\mu} - \frac{pq}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{pq}{q^2}q^{\nu}\right)F_2(x_B,Q^2)$$

for unpolarised proton and electromagnetic current

 $\rightsquigarrow~\sigma_{\ell+p \rightarrow \ell+X}~$ expressed through F_1 and F_2

 valid in any kinematics no reference to factorisation do not confuse structure functions with parton distributions

Factori

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Factorisation: physics idea and technical implementation

idea: separation of physics at different scales

- high scales: quark-gluon interactions
 → compute in perturbation theory
- low scale: proton \rightarrow quarks, antiquarks, gluons \rightsquigarrow parton densities

requires hard momentum scale in process large photon virtuality $Q^2 = -q^2$ in DIS

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Factorisation: physics idea and technical implementation

implementation: separate process into

- "hard" subgraph *H* with particles far off-shell compute in perturbation theory
- "collinear" subgraph A with particles moving along proton turn into definition of parton density

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Factorisation: physics idea and technical implementation

- \blacktriangleright note difference with high-energy/small x factorization
 - separate dynamics according to rapidity (not virtuality) of particles
 - overlap of two factorization schemes if have strong ordering in rapidity and virtuality

Factorisation 00000000000	Evolution 0000000	Event generators O	Summary 00
Collinear expans	sion		9 ~~~ H k/ H
► graph gives ∫	$\int d^4k H(k) A(k);$ sin	mplify further	p A

► light-cone coordinates ~→ blackboard

► in hard graph neglect small components of external lines ~> Taylor expansion

$$H(k^+, k^-, k_T) = H(k^+, 0, 0) +$$
corrections

 \rightsquigarrow loop integration greatly simplifies:

 $\int d^4k \ H(k) \ A(k) \approx \int dk^+ \ H(k^+, 0, 0) \ \int dk^- d^2k_T \ A(k^+, k^-, k_T)$

- ▶ in hard scattering treat incoming/outgoing partons as exactly collinear (k_T = 0) and on-shell (k⁻ = 0)
- ▶ in collin. matrix element integrate over k_T and virtuality
 → collinear (or k_T integrated) parton densities only depend on k⁺ = xp⁺

further subtleties related with spin of partons, not discussed here

Definition of parton distributions

matrix elements of quark/gluon operators

$$f_q(x) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \left\langle p \left| \bar{q}(0) \frac{1}{2} \gamma^+ W[0, z] q(z) \right| p \right\rangle \Big|_{z^+=0, z_T=0}$$

 $q(\boldsymbol{z}) = \mathsf{quark}$ field operator: annihilates quark

 $\bar{q}(0)=\mbox{conjugate field operator: creates quark}$

 $\frac{1}{2}\gamma^+$ sums over quark spin $\int \frac{dz^-}{2\pi} e^{ixp^+z^-}$ projects on quarks with $k^+ = xp^+$ W[0, z] = Wilson line, makes product of fields gauge invariant \rightsquigarrow later

- analogous definitions for polarised quarks, antiquarks, gluons
- analysis of factorisation used Feynman graphs but here provide non-perturbative definition

Factorisation	Evolution	Event generators	Summary
00000000000	0000000	0	00

Lowest order results for DIS and DVCS

hard-scattering part of handbag graphs:

 $\mathsf{kinematics} \to \mathsf{blackboard}$

Factorisation	Evolution	Event generators	Summary
00000000000	000000	0	00

Lowest order results for DIS and DVCS

hard-scattering part of handbag graphs:

$$\frac{1}{x - x_B + i\varepsilon} + \{\text{crossed graph}\} = \text{PV} \frac{1}{x - x_B} - i\pi\delta(x - x_B) + \{\text{crossed graph}\}$$

for DIS:

$$\sigma_{\text{tot}} \propto \text{Im}\,\mathcal{A}(\gamma_T^* p \to \gamma_T^* p) = \sum_q (ee_q)^2 \big[q(x_B) + \bar{q}(x_B)\big]$$
$$\mathcal{A}(\gamma_L^* p \to \gamma_L^* p) = 0$$

$$2x_B F_1 = F_2 = x_B \sum_q e_q^2 \left[q(x_B) + \bar{q}(x_B) \right]$$

Introduction to perturbative QCD and factorization

Factorisation	Evolution	Event generators	Summary
00000000000	000000	0	00

Lowest order results for DIS and DVCS

hard-scattering part of handbag graphs:

$$\frac{1}{x - x_B + i\varepsilon} + \{\text{crossed graph}\} = \text{PV} \frac{1}{x - x_B} - i\pi\delta(x - x_B) + \{\text{crossed graph}\}$$

b for DVCS:

$$\mathcal{A}(\gamma_T^* p \to \gamma_T p) = \sum_q (ee_q)^2 \left[\operatorname{PV} \int dx \, \frac{\mathsf{GPD}(x, x_B, t)}{x_B - x} + i\pi \, \mathsf{GPD}(x_B, x_B, t) \right] + \{\mathsf{c.g.}\}$$

Factorisation	Evolution	Event generators	Summary
000000000000	000000	0	00

Factorisation for pp collisions

- ▶ example: Drell-Yan process $pp \rightarrow \gamma^* + X \rightarrow \mu^+ \mu^- + X$ where X = any number of hadrons

Factorisation	Evolution	Event generators	Summary
000000000000	000000	0	00

Factorisation for pp collisions

- ▶ example: Drell-Yan process $pp \rightarrow \gamma^* + X \rightarrow \mu^+ \mu^- + X$ where X = any number of hadrons

- "spectator" interactions produce additional particles which are also part of unobserved system X ("underlying event")
- need not calculate this thanks to unitarity as long as cross section/observable sufficiently inclusive
- but must calculate/model if want more detail on the final state

Factorisation	Evolution	Event generators	Summary
000000000000	000000	0	00

More complicated final states

- production of W, Z or other colourless particle (Higgs, etc) same treatment as Drell-Yan
- ▶ jet production in ep or pp: hard scale provided by p_T
- heavy quark production: hard scale is m_c , m_b , m_t

Importance of factorisation concept

- describe high-energy processes: study electroweak physics, search for new particles, e.g.
 - discovery of top quark at Tevatron $(p + \bar{p} \text{ at } \sqrt{s} = 1.8 \text{ TeV})$
 - measurement of W mass at Tevatron and LHC
 - determination of Higgs boson properties at LHC
- determine parton densities as a tool to make predictions and to learn about proton structure
 - require many processes to disentangle quark flavors and gluons

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Fragmentation

▶ cross DIS $eh \rightarrow e + X$ to $e^+e^- \rightarrow \bar{h} + X$ i.e., $\gamma^*h \rightarrow X$ to $\gamma^* \rightarrow \bar{h} + X$

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Fragmentation

► cross DIS $eh \to e + X$ to $e^+e^- \to \bar{h} + X$ i.e., $\gamma^*h \to X$ to $\gamma^* \to \bar{h} + X$

• or Drell-Yan $h_1h_2 \rightarrow \gamma^* + X$ to $\gamma^* \rightarrow \bar{h}_1\bar{h}_2 + X$

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Fragmentation

► cross DIS $eh \to e + X$ to $e^+e^- \to \bar{h} + X$ i.e., $\gamma^*h \to X$ to $\gamma^* \to \bar{h} + X$

• or SIDIS $eh_1 \rightarrow eh_2 + X$

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

Fragmentation functions

replace parton density

$$k^+ = xp^+$$

$$f(x) = \int \frac{d\xi^-}{4\pi} e^{i\xi^- p^+ x} \langle h | \bar{q}(0) \gamma^+ W(0, \xi^-) q(\xi^-) | h \rangle$$

$$= \sum_X \int \frac{d\xi^-}{4\pi} e^{i\xi^- p^+ x}$$

$$\times \sum_X \langle h | (\bar{q}(0)\gamma^+)_{\alpha} W(0, \infty) | X \rangle \langle X | W(\infty, \xi^-) q_{\alpha}(\xi^-) | h \rangle$$

by fragmentation function

 $p^+ = zk^+$

$$D(z) = \frac{1}{2N_c z} \int \frac{d\xi^-}{4\pi} e^{i\xi^- p^+/z} \\ \times \sum_X \langle 0 | W(\infty, \xi^-) q_\alpha(\xi^-) | \bar{h}X \rangle \langle \bar{h}X \rangle | (\bar{q}(0)\gamma^+)_\alpha W(0, \infty) | 0 \rangle$$

Factorisation	Evolution	Event generators	Summary
0000000000	•000000	0	00

A closer look at one-loop corrections

example: DIS

- UV divergences removed by standard renormalisation
- soft divergences cancel in sum over graphs
- collinear div. do not cancel, have integrals

$$\int\limits_{0} \frac{dk_T^2}{k_T^2}$$

what went wrong?

actorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorisation scale μ

• with cutoff: take $k_T > \mu$ $1/\mu \sim$ transverse resolution take $k_T < \mu$

actorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorisation scale μ

- with cutoff: take $k_T > \mu$ $1/\mu \sim$ transverse resolution
- in dim. reg.: subtract collinear divergence

take $k_T < \mu$

subtract ultraviolet div.

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

- The evolution equations
 - DGLAP equations

$$\frac{d}{d\log\mu^2} f(x,\mu) = \int_x^1 \frac{dx'}{x'} P\left(\frac{x}{x'}\right) f(x',\mu) = \left(P \otimes f(\mu)\right)(x)$$

- P =splitting functions
 - have perturbative expansion

$$P(x) = \alpha_s(\mu) P^{(0)}(x) + \alpha_s^2(\mu) P^{(1)}(x) + \alpha_s^3(\mu) P^{(2)}(x) \dots$$

known to 3 loops Moch, Vermaseren, Vogt 2004

• contains terms $\propto \delta(1-x)$ from virtual corrections

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

quark and gluon densities mix under evolution:

matrix evolution equation

parton content of proton depends on resolution scale μ

Factorisation	Evolution	Event generators	Summary
0000000000	0000000	0	00

Factorisation formula

▶ example:
$$p + p \rightarrow H + X$$

$$\sigma(p+p \to H+X) = \sum_{i,j=q,\bar{q},g} \int dx_i \, dx_j \, f_i(x_i,\mu_F) \, f_j(x_j,\mu_F)$$
$$\times \hat{\sigma}_{ij}\left(x_i,x_j,\alpha_s(\mu_R),\mu_R,\mu_F,m_H\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_H^4}\right)$$

- $\hat{\sigma}_{ij} = \text{cross section for hard scattering } i + j \rightarrow H + X$ m_H provides hard scale
- μ_R = renormalisation scale, μ_F = factorisation scale may take different or equal
- μ_F dependence in C and in f cancels up to higher orders in α_s similar discussion as for μ_R dependence
- accuracy: α_s expansion and power corrections $\mathcal{O}(\Lambda^2/m_H^2)$
- ▶ can make σ and $\hat{\sigma}$ differential in kinematic variables, e.g. p_T of H

Factorisation	Evolution	Event generators	Summary
0000000000	0000000	0	00

Scale dependence

examples: rapidity distributions in Z/γ^* and in Higgs production

Anastasiou, Dixon, Melnikov, Petriello, hep-ph/0312266

Anastasiou, Melnikov, Petriello, hep-ph/0501130

 $\mu_F = \mu_R = \mu$ varied within factor 1/2 to 2

Introduction to perturbative QCD and factorization

Factorisation	Evolution	Event generators	Summary
0000000000	0000000	0	00

Scale dependence

example: inclusive Higgs production

Mistlberger, arXiv:1802.00833

Introduction to perturbative QCD and factorization

Factorisation	Evolution	Event generators	Summary
0000000000	000000	0	00

LO, NLO, and higher

- instead of varying scale(s) may estimate higher orders by comparing NⁿLO result with Nⁿ⁻¹LO
- caveat: comparison NLO vs. LO may not be representative for situation at higher orders

often have especially large step from LO to NLO

- certain types of contribution may first appear at NLO e.g. terms with gluon density g(x) in DIS, $pp \rightarrow Z + X$, etc.
- final state at LO may be too restrictive

e.g. in $\frac{d\sigma}{dE_{T1} dE_{T2}}$ for dijet production

Factorisation	Evolution	Event generators	Summary
0000000000	000000	•	00

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements

Factorisation	Evolution	Event generators	Summary
0000000000	000000	•	00

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements
 - parton showers: small-angle radiation from partons in initial and final state (in perturbative region)

Factorisation	Evolution	Event generators	Summary
0000000000	000000	•	00

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements
 - parton showers: small-angle radiation from partons in initial and final state (in perturbative region)
 - models for multiparton interactions

Factorisation	Evolution	Event generators	Summary
0000000000	000000	•	00

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements
 - parton showers: small-angle radiation from partons in initial and final state (in perturbative region)
 - models for multiparton interactions and hadronisation

Summary of part 3 Factorisation

- implements ideas of parton model in QCD
 - perturbative corrections (NLO, NNLO, ...)
 - field theoretical def. of parton densities
 → bridge to non-perturbative QCD
- ▶ valid for sufficiently inclusive observables and up to power corrections in Λ/Q or $(\Lambda/Q)^2$ which are in general not calculable
- must in a consistent way
 - remove collinear kinematic region in hard scattering
 - remove hard kinematic region in parton densities
 ↔ UV renormalisation

procedure introduces factorisation scale μ_F

• separates "collinear" from "hard", "object" from "probe"

Summary of part 3 Factorisation

- implements ideas of parton model in QCD
 - perturbative corrections (NLO, NNLO, ...)
 - field theoretical def. of parton densities
 → bridge to non-perturbative QCD
- ▶ valid for sufficiently inclusive observables and up to power corrections in Λ/Q or $(\Lambda/Q)^2$ which are in general not calculable
- theoretical backbone for simulating hard processes in many event generators

Factorisation
000000000000000

Factorisation at work

