Introduction to perturbative QCD and factorization

Part 4: GPDs and exclusive processes

M. Diehl

Deutsches Elektronen-Synchroton DESY

Ecole Joliot Curie 2018

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
●OO	0000000	00000	0	00000	00	0

 $F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p', s' \right| \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) \left| p, s \right\rangle_{z^{+}=0, \ z=0}$

kinematic variables:

 x, ξ momentum fractions w.r.t. $P = \frac{1}{2}(p + p')$ $\xi = (p - p')^+/(p + p')^+$ plus-momentum transfer in DVCS: $\xi = x_B/(2 - x_B)$, x integrated over

t can trade for transverse momentum transfer ${\bf \Delta}={\bf p}'-{\bf p}$ $t=-\frac{4\xi^2m^2+{\bf \Delta}^2}{1-\xi^2}$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
●OO	0000000	00000	0	00000	00	0

- nonzero for $-1 \le x \le 1$
- ► $|x| > \xi$ similar to parton densities correlation $\psi^*_{x-\xi} \psi_{x+\xi}$ instead of probability $|\psi_x|^2$ $|x| < \xi$ coherent emission of $q\bar{q}$ pair
- regions related by Lorentz invariance spacelike partons incoming in some frames, outgoing in others

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•00	0000000	00000	0	00000	00	0

$$F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) | p, s \rangle_{z^{+}=0, z=0}$$

= $H^{q} \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \bar{u}(p', s') \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} u(p, s)$

proton spin structure:

 $H^q \leftrightarrow \mathbf{s} = \mathbf{s}'$ for p = p' recover usual densities:

$$H^{q}(x,\xi = 0, t = 0) = \begin{cases} q(x) & x > 0\\ -\bar{q}(-x) & x < 0 \end{cases}$$

 $E^q \leftrightarrow {\pmb s} \neq {\pmb s}' \quad \text{ decouples for } p = p'$

► similar definitions for polarized quarks \tilde{H}^q, \tilde{E}^q and for gluons $H^g(x, \xi = 0, t = 0) = xg(x)$ for x > 0

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•00	0000000	00000	0	00000	00	0

$$F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) | p, s \rangle_{z^{+}=0, z=0}$$

= $H^{q} \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \bar{u}(p', s') \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} u(p, s)$

• more precisely: for proton helicities (λ', λ)

$$\begin{array}{ll} F^q_{\lambda'=\lambda} \ \propto \ H^q + \frac{\xi^2}{1-\xi^2} E^q \\ \\ F^q_{\lambda'\neq\lambda} \ \propto \ e^{\pm i\varphi} \ \frac{|\mathbf{\Delta}|}{2m_p} E^q \qquad \qquad \varphi = \text{azimuthal angle of } \mathbf{\Delta} \end{array}$$

► $E^q \neq 0$ needs orbital angular momentum between partons $\Delta L^3 = \pm 1$ from helicity imbalance M. Burkardt, G. Schnell '05

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•00	0000000	00000	0	00000	00	0

$$\begin{split} F^{q} &= \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p', s' \right| \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) \left| p, s \right\rangle_{z^{+}=0, \ z=0} \\ &= H^{q} \ \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \ \bar{u}(p', s') \ \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} \ u(p, s) \end{split}$$

 $\blacktriangleright\,$ time reversal invariance $\rightarrow\,$

$$H^q(x,\xi,t) = H^q(x,-\xi,t)$$

same for other distrib's

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•00	0000000	00000	0	00000	00	0

$$\begin{aligned} F^{q} &= \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p', s' \right| \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) \left| p, s \right\rangle_{z^{+}=0, \ z=0} \\ &= H^{q} \ \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \ \bar{u}(p', s') \ \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} \ u(p, s) \end{aligned}$$

- ▶ Mellin moments: $\int dx \, x^n \rightarrow \text{local operator} \rightarrow \text{form factors}$
- can be calculated in lattice QCD

$$\int dx \rightarrow \text{vector current } \bar{q}(0) \gamma^+ q(0)$$

$$\sum_q e_q \int dx H^q(x,\xi,t) = F_1(t) \quad \text{Dirac f.f.}$$

$$\sum_q e_q \int dx E^q(x,\xi,t) = F_2(t) \quad \text{Pauli f.f.}$$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
•00	0000000	00000	0	00000	00	0

$$F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p', s' | \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) | p, s \rangle_{z^{+}=0, z=0}$$

= $H^{q} \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \bar{u}(p', s') \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} u(p, s)$

- ▶ Mellin moments: $\int dx \, x^n \rightarrow \text{local operator} \rightarrow \text{form factors}$
- $\int dx \, x^n e^{ixP^+z^-} \, \rightsquigarrow \, \delta^{(n)}(z^-) \, \rightsquigarrow$ operators with derivatives ∂^+
- Lorentz invariance \rightarrow polynomiality property $\int dx \, x^{n-1} H^q(x,\xi,t) = \sum_{k=0}^n (2\xi)^k \, A^q_{n,k}(t)$

 $\Delta^+ = -2\xi P^+$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

$$\begin{split} F^{q} &= \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p', s' \right| \bar{q}(-\frac{1}{2}z) W[-\frac{1}{2}z, \frac{1}{2}z] \gamma^{+}q(\frac{1}{2}z) \left| p, s \right\rangle_{z^{+}=0, \ z=0} \\ &= H^{q} \ \bar{u}(p', s') \gamma^{+}u(p, s) + E^{q} \ \bar{u}(p', s') \ \frac{i}{2m_{p}} \sigma^{+\alpha}(p'-p)_{\alpha} \ u(p, s) \end{split}$$

► $\int dx \, x \rightarrow \text{energy-momentum tensor}$ Ji's sum rule $\frac{1}{2} \int_{-1}^{1} dx \, x(H^q + E^q) = J^q(t)$ $J^q(0) = \text{total} \text{ angular momentum carried}$ by quark flavor q (helicity and orbital part) recall: E^q needs orbital angular momentum for gluons: $\int_{-1}^{1} dx \, (H^g + E^g) = J^g(t)$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Model ansätze for GPDs (only a sketch)

typical general strategy

- use standard parton densities at input (or boundary conditions)
- ▶ ansatz for t dependence ensure that sum rules for $H \leftrightarrow F_1$ and $E \leftrightarrow F_2$ satisfied factorized ansätze like $H(x, \xi, t) = h(x, \xi)F_1(t)$ disfavored by theory and lattice results
- generate ξ dependence so as to satisfy polynomiality requires special constructions, e.g. double distributions
- check that positivity bounds satisfied not always done, often only possible numerically

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Double distributions and the D term

$$H(x,\xi,t) = \int d\beta \, d\alpha \, \delta(x-\beta-\xi\alpha) \, f(\beta,\alpha,t)$$

- $f(\beta, \alpha, t) =$ double distribution
- forward limit: $\int d\alpha f(\beta, \alpha, 0) = q(\beta)$
- ensures polyomiality:

$$\int dx \, x^{n-1} H(x,\xi,t) = \int d\beta \, d\alpha \, (\beta + \alpha\xi)^{n-1} \, f(\beta,\alpha,t) = \sum_{k=0}^{n-1} (2\xi)^k \, A_{n,k}(t)$$

- misses power ξ^n for H and Efor H + E and \tilde{H} , \tilde{E} highest allowed power is ξ^{n-1}
- add Polyakov-Weiss /D term

$$H_{DD}(x,\xi,t) + D(x/\xi,t) = E_{DD}(x,\xi,t) - D(x/\xi,t)$$

gives power $\int dx \, x^{n-1} D(x/\xi,t) = \xi^n \int d\alpha \, \alpha^{n-1} D(\alpha,t)$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	•0000000	00000	0	00000	00	0

Localizing partons: impact parameter

 states with definite light-cone momentum p⁺ and transverse position (impact parameter):

$$|p^+, \boldsymbol{b}\rangle = \frac{1}{(2\pi)^2} \int d^2 \boldsymbol{p} \, e^{-i\boldsymbol{b} \cdot \boldsymbol{p}} \, |p^+, \boldsymbol{p}\rangle$$

formal: eigenstates of 2 dim. position operator

- can exactly localize proton in 2 dimensions no limitation by Compton wavelength
- and stay in frame where proton moves fast
 ~> parton interpretation
- different from localization in 3 spatial dimensions well-known for form factors; also for GPDs

Belitsky, Ji, Yuan '03; Brodsky et al. '06

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	●0000000	00000	0	00000	00	0

Localizing partons: impact parameter

 states with definite light-cone momentum p⁺ and transverse position (impact parameter):

$$|p^+, \boldsymbol{b}\rangle = rac{1}{(2\pi)^2} \int d^2 \boldsymbol{p} \, e^{-i\boldsymbol{b} \cdot \boldsymbol{p}} \, |p^+, \boldsymbol{p}\rangle$$

formal: eigenstates of 2 dim. position operator

b is center of momentum of the partons in proton

$$\boldsymbol{b} = \frac{\sum_{i} p_{i}^{+} \boldsymbol{b}_{i}}{\sum_{i} p_{i}^{+}} \qquad (i = q, \bar{q}, g)$$

consequence of Lorentz invariance: transverse boosts

$$k^+
ightarrow k^+ \qquad oldsymbol{k}
ightarrow oldsymbol{k} - k^+ oldsymbol{v}$$

nonrelativistic analog: Galilei invariance $\stackrel{\text{Noether}}{\longrightarrow}$ center of mass

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Impact parameter GPDs for simplicity take $\xi = 0$

 $(\xi \neq 0 \text{ and } s \neq s' \text{ later})$

 $\rightarrow \mathsf{blackboard}$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Impact parameter GPDs

for simplicity take $\xi = 0$

 $(\xi \neq 0 \text{ and } s \neq s' \text{ later})$

►
$$q(x, b^2) = (2\pi)^{-2} \int d^2 \Delta e^{-ib\Delta} H^q(x, \xi = 0, t = -\Delta^2)$$

gives distribution of quarks with

- longitudinal momentum fraction x
- transverse distance b from proton center

average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q(x, b^2)}{\int d^2 b \ q(x, b^2)} = 4 \frac{\partial}{\partial t} \log H(x, \xi = 0, t) \Big|_{t=0}$$

 \blacktriangleright integrated over $x \rightsquigarrow$ form factor

$$\langle b^2 \rangle = \frac{\int dx \int d^2 b \ b^2 \ q(x, b^2)}{\int dx \int d^2 b \ q(x, b^2)} = 4 \frac{\partial}{\partial t} \log F_1(t) \Big|_{t=0}$$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Impact parameter GPDs: $\xi \neq 0$

- Fourier transf. w.r.t. Δ
- hadron center of momentum shifts because of plus-momentum transfer
- key observable: t dependence of cross sections at given ξ

 $t = -\frac{4\xi^2 m^2 + \Delta^2}{1 - \xi^2}$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Impact parameter GPDs: $\xi \neq 0$

especially simple for x = ξ
 change to asymmetric variables:

$$\xi = rac{\zeta}{2-\zeta}$$
 and $t = -rac{\zeta^2 m_p^2 + \Delta^2}{1-\zeta}$

► Fourier transf. w.r.t. Δ → distance of struck parton from spectator system

in following concentrate on $\xi=0$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Apples, oranges, and other fruit

form factor	distribution	$\langle b^2 angle$
F_1^p	$\sum_{a} e_q \left(q - \bar{q} \right)$	$(0.66\mathrm{fm})^2$
G_E^p	ų	$(0.71 \mathrm{fm})^2 = (0.66 \mathrm{fm})^2 + \frac{\kappa_p}{m_p^2}$
G_A	$\Delta u + \Delta \bar{u} - (\Delta d + \Delta \bar{d})$	$(0.52 \text{ to } 0.54 \text{ fm})^2$

 \blacktriangleright in form factor integral parton distributions have average $x\sim 0.2$

▶ generalized gluon dist. at $x = 10^{-3} \iff \langle b^2 \rangle = (0.57 \text{ to } 0.60 \text{ fm})^2$ from J/Ψ photoproduction at HERA

note:

 $\begin{array}{l} 4 \frac{\partial}{\partial t} \log G(t) \big|_{t=0} = \text{squared impact parameter} \\ 6 \frac{\partial}{\partial t} \log G(t) \big|_{t=0} = \text{squared radius} \end{array}$

numbers: G_E and F_1 from Particle Data Group; G_A from Bernard et al. '01

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Lattice calculations

results for GPD moments

$$A_{n,0}(t) = \int dx \, x^{n-1} H(x,\xi=0,t) = \int d^2 b \, e^{ib\Delta} \int dx \, x^{n-1} q(x,b^2)$$

LHPC Collaboration, arXiv:0705.4295

▶ steeper t slope for larger n \rightsquigarrow decrease of $\langle b^2 \rangle_x$ with x

 $\blacktriangleright \ d = b/(1-x)$

= distance of selected parton from spectator system gives lower bound on overall size of proton

• finite size of configurations with $x \to 1$ implies

 $\langle b^2 \rangle_x \sim (1-x)^2$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	00000000	00000	0	00000	00	0

Small x

- partons with smaller $x \rightarrow$ broader in b
- Gribov diffusion: parton branching as random walk in b space

 $\rightarrow \langle b^2 \rangle \propto \alpha' \log(1/x)$

Regge phenomenology: simplest ansatz

$$H(x,\xi=0,t) \sim e^{tB} \left(\frac{1}{x}\right)^{\alpha_0+\alpha' t} = x^{-\alpha_0} e^{t\alpha' \log(1/x) + tB}$$

- is effective power-law in limited range of x and t at given μ^2
- works well in fits of forward parton distributions
- used in GPD models with further ansatz to generate ξ dep'ce
- For gluons α' ~ 0.15 GeV⁻² from HERA J/Ψ production barely known: value for valence and sea quarks, interplay with gluons

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Large b

▶ prediction from chiral dynamics $\langle b^2 \rangle \sim e^{-\kappa b_T} / b_T$ with $\kappa \sim 2m_{\pi} = (0.7 \,\text{fm})^{-1}$

sets in for $x \lesssim m_\pi/m_p$ for larger x pion virtuality $\gg m_\pi^2$

Ch. Weiss et al

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	0000	0	00000	00	0

Now add spin

 $\begin{array}{l} \blacktriangleright E \leftrightarrow \text{nucleon helicity flip} \quad \langle \downarrow | \mathcal{O} | \uparrow \rangle \\ \leftrightarrow \text{ transverse pol. difference} \quad |X \pm \rangle = \frac{1}{\sqrt{2}} (|\uparrow \rangle \pm |\downarrow \rangle) \\ \langle X + |\mathcal{O} | X + \rangle - \langle X - |\mathcal{O} | X - \rangle = \langle \uparrow | \mathcal{O} | \downarrow \rangle + \langle \downarrow | \mathcal{O} | \uparrow \rangle \end{array}$

• quark density in proton state $|X+\rangle$ shifted in y direction:

$$q^{\uparrow}(x, \boldsymbol{b}) = q(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e^q(x, \boldsymbol{b}^2)$$

 $e^q(x,b)$ is Fourier transform of $E^q(x,\xi=0,t)$

derivative from Fourier trf. of

$$\frac{i\mathbf{\Delta}^{y}}{2m} E^{q}(x,\xi=0,t=-\mathbf{\Delta}^{2})$$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	0000	0	00000	00	0

Now add spin

 $\begin{array}{l} \blacktriangleright E \leftrightarrow \text{nucleon helicity flip} \quad \langle \downarrow | \mathcal{O} | \uparrow \rangle \\ \leftrightarrow \text{ transverse pol. difference} \quad |X \pm \rangle = \frac{1}{\sqrt{2}} (|\uparrow \rangle \pm |\downarrow \rangle) \\ \langle X + | \mathcal{O} | X + \rangle - \langle X - | \mathcal{O} | X - \rangle = \langle \uparrow | \mathcal{O} | \downarrow \rangle + \langle \downarrow | \mathcal{O} | \uparrow \rangle \end{array}$

• quark density in proton state $|X+\rangle$ shifted in y direction:

$$q^{\uparrow}(x, \boldsymbol{b}) = q(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e^q(x, \boldsymbol{b}^2)$$

 $e^q(x,b)$ is Fourier transform of $E^q(x,\xi=0,t)$

semi-classical picture: rotating matter distribution

• gives alternative view on Ji's sum rule $L^x = b^y p^z$ M. Burkardt '05

GPD model from MD, Th Feldmann, R Jakob, P Kroll '04

• from p and n magnetic moments $\kappa_p = \frac{2}{3}\kappa_u - \frac{1}{3}\kappa_d$, $\kappa_n = \frac{2}{3}\kappa_d - \frac{1}{3}\kappa_u$

$$\int dx \, E^u(x,0,0) = F_2^u(0) = \kappa^u \approx 1.67$$
$$\int dx \, E^d(x,0,0) = F_2^d(0) = \kappa^d \approx -2.03$$

 \rightsquigarrow large spin-orbit correlations for $q-\bar{q}$

► size of effect for sea quarks and gluons ~→ wait for EIC

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	0000	0	00000	00	0

density representation

$$q^{\uparrow}(x, \boldsymbol{b}) = q(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e^q(x, \boldsymbol{b}^2)$$

gives positivity bound

M. Burkardt '03

$$\left| E^{q}(x,\xi=0,t=0) \right| \leq q(x) m \sqrt{\langle \boldsymbol{b}^{2} \rangle_{x}}$$

have more restrictive bounds involving polarized distributions

 $\Rightarrow E^q$ must fall faster than H^q at large x

• $E \leftrightarrow$ orbital angular momentum \Rightarrow not carried by partons with large x

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

The proton spin budget

► Ji's sum rule:
$$\frac{1}{2} = J^g + \sum_q J^q$$
 with
 $J^q = \frac{1}{2} \int dx \, x \, (H^q + E^q) \Big|_{\substack{t=0\\\xi=0}} \qquad J^g = \frac{1}{2} \int dx \, (H^g + E^g) \Big|_{\substack{t=0\\\xi=0}}$

Further decompose J^q = L^q + ¹/₂Σ and J^g = L^g + Δg with Σ and Δg from ordinary parton densities operator interpretation of L^g nontrivial

 $\Sigma_{\overline{\rm MS}} \approx 25\%$

▶ alternative decomposition $\frac{1}{2} = \mathcal{J}^g + \sum_q \mathcal{J}^q$

Bashinski, Jaffe '98

with $\mathcal{J}^g = \mathcal{L}^g + \Delta g$ and $\mathcal{J}^q = \mathcal{L}^q + \frac{1}{2}\Sigma$

•
$$J^q \neq \mathcal{J}^q$$
, $L^q \neq \mathcal{L}^q$ and $J^g \neq \mathcal{J}^g$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

The proton spin budget

► Ji's sum rule:
$$\frac{1}{2} = J^g + \sum_q J^q$$
 with
 $J^q = \frac{1}{2} \int dx \, x (H^q + E^q) \Big|_{\substack{t=0\\\xi=0}} \qquad J^g = \frac{1}{2} \int dx \, (H^g + E^g) \Big|_{\substack{t=0\\\xi=0}}$

- further decompose $J^q = L^q + \frac{1}{2}\Sigma$ and $J^g = L^g + \Delta g$ with Σ and Δg from ordinary parton densities $\Sigma_{\overline{\text{MS}}} \approx 25\%$ operator interpretation of L^g nontrivial
- ► alternative decomposition $\frac{1}{2} = \mathcal{J}^g + \sum_q \mathcal{J}^q$ Bashinski, Jaffe '98
- ambiguities in decomposition reflect difficulty to separate
 - "quark" from "gluon" contrib's in presence of interactions gluon field contains physical and unphysical (gauge) d.o.f.
 - "intrinsic" from orbital angular momentum

similar issues already in QED

there need not be a unique choice

many theory papers, see e.g. discussion by K-F Liu, C Lorcé 2015

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

The proton spin budget

► Ji's sum rule:
$$\frac{1}{2} = J^g + \sum_q J^q$$
 with
 $J^q = \frac{1}{2} \int dx \, x \, (H^q + E^q) \Big|_{\substack{t=0\\\xi=0}} \qquad J^g = \frac{1}{2} \int dx \, (H^g + E^g) \Big|_{\substack{t=0\\\xi=0}}$

- further decompose $J^q = L^q + \frac{1}{2}\Sigma$ and $J^g = L^g + \Delta g$ with Σ and Δg from ordinary parton densities $\Sigma_{\overline{\text{MS}}} \approx 25\%$ operator interpretation of L^g nontrivial
- ▶ lattice → Σ and J^q
 ↓ difficult, Δg probably impossible
 ↓ directly get integrals over x at ξ = 0
- exclusive processes \rightsquigarrow GPDs \rightsquigarrow J^q and (more difficult) J^g
 - exclusive (and inclusive) processes: $\int dx$ difficult
 - measure at $\xi \neq 0$
 - but direct access to x dependence of $E^{q,g}(x, x, t)$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Some lattice estimates at scale $\mu = 2 \,\mathrm{GeV}$

▶ QCDSF, M. Ohtani et al. '07

$$J^u = 0.230(8)$$
 $J^d = -0.004(8)$
 $L^{u+d} = 0.025(27)$

- ► LHPC, J.D. Bratt, Ph. Hägler et al. '10 $J^u = 0.236(6)$ $J^d = 0.0018(37)$ $L^{u+d} = 0.056(11)$ or 0.030(12)
- C. Alexandrou et al. '17 $J^u = 0.308(38)$ $J^d = 0.054(38)$ $L^{u+d} = 0.140(55)$
- still important systematic uncertainties
- ▶ general trend: $J^u > 0$, $J^d \approx 0$ $L^u < 0$, $L^d > 0$ and $L^u + L^d \approx 0$ or smallish

• small L^{u+d} does not mean absence of orbital angular momentum

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	•	00000	00	0

Evolution

▶ for non-singlet combinations (e.g. $q - \bar{q}$ or u - d)

$$\mu^{2} \frac{d}{d\mu^{2}} H^{\rm NS}(x,\xi,t) = \int dx' V^{\rm NS}(x,x',\xi) H^{\rm NS}(x',\xi,t)$$

▶ for singlet $\sum_{q} (q + \bar{q})$: matrix equation for mixing with gluon GPD

same evolution for E (independent of proton spin)

generalization of DGLAP evolution to $\xi \neq 0$ recover usual DGLAP for $\xi = 0$

ERBL evolution as for meson distribution amplitudes

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	•	00000	00	0

Evolution

▶ for non-singlet combinations (e.g. $q - \bar{q}$ or u - d)

$$\mu^{2} \frac{d}{d\mu^{2}} H^{\rm NS}(x,\xi,t) = \int dx' V^{\rm NS}(x,x',\xi) H^{\rm NS}(x',\xi,t)$$

▶ for singlet $\sum_{q} (q + \bar{q})$: matrix equation for mixing with gluon GPD

- same evolution for E (independent of proton spin)
- ► evolution local in t Fourier trf ~→ evolution local in b

(take $-t \ll \mu^2$ to be safe) (take $1/\mu \ll b$ to be safe)

▶ for $\xi = 0$: $q(x, b^2)$ fulfills usual DGLAP evolution equation

$$\mu^{2} \frac{d}{d\mu^{2}} q_{\rm NS}(x, b^{2}) = \int_{x}^{1} \frac{dz}{z} P_{\rm NS}\left(\frac{x}{z}\right) q_{\rm NS}(z, b^{2})$$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	•	00000	00	0

Evolution

▶ for non-singlet combinations (e.g. $q - \bar{q}$ or u - d)

$$\mu^{2} \frac{d}{d\mu^{2}} H^{\rm NS}(x,\xi,t) = \int dx' V^{\rm NS}(x,x',\xi) H^{\rm NS}(x',\xi,t)$$

▶ for singlet $\sum_{q} (q + \bar{q})$: matrix equation for mixing with gluon GPD

- same evolution for E (independent of proton spin)
- ► evolution local in t Fourier trf ~→ evolution local in b

(take $-t \ll \mu^2$ to be safe) (take $1/\mu \ll b$ to be safe)

average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q(x, b^2)}{\int d^2 b \ q(x, b^2)}$$

evolves as

$$\mu^2 \frac{d}{d\mu^2} \langle b^2 \rangle_x = -\frac{1}{q_{\rm NS}(x)} \int_x^1 \frac{dz}{z} P_{\rm NS}\left(\frac{x}{z}\right) q_{\rm NS}(z) \Big[\langle b^2 \rangle_x - \langle b^2 \rangle_z \Big]$$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Key processes involving GPDs

deeply virtual Compton scattering (DVCS)

also: $\gamma p \to \gamma^* p$ with $\gamma^* \to \ell^+ \ell^-$ (timelike CS) $\gamma^* p \to \gamma^* p$ (double DVCS)

• meson production: large Q^2 or heavy quarks

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

DVCS amplitudes and GPDs

- twist-two amplitudes involve 4 four GPDs per parton
 - *H*, *E*: unpolarized quark/gluon
 - \tilde{H}, \tilde{E} : long. pol. quark/gluon
- for photon helicity conserving amplitudes write

$$e^{-2}\mathcal{A}(\gamma^* p \to \gamma p) = \bar{u}(p')\gamma^+ u(p) \mathcal{H} + \bar{u}(p') \frac{i}{2m_p} \sigma^{+\alpha}(p'-p)_{\alpha} u(p) \mathcal{E}$$
$$+ \bar{u}(p')\gamma^+ \gamma_5 u(p) \widetilde{\mathcal{H}} + \bar{u}(p') \frac{(p'-p)^+}{2m_p} \gamma_5 u(p) \widetilde{\mathcal{E}}$$

- Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ depend on ξ, t, Q^2
- representation holds for any Q^2 , not only at twist two

 \blacktriangleright at leading twist and LO in α_s

$$\mathcal{H} = \sum_{q} e_{q}^{2} \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right] H^{q}(x, \xi, t)$$

same kernels for E, different set for $\widetilde{H},\widetilde{E}$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Aside: imaginary and absorptive part

- scattering matrix $S: |X\rangle_{in} = S|X\rangle_{out}$
 - \rightsquigarrow transition amplitude $_{\rm out}\langle f|i\rangle_{\rm in} = _{\rm out}\langle f|\mathcal{S}|i\rangle_{\rm out}$

•
$$S$$
 is unitary: $S^{\dagger}S = 1$

 \rightarrow blackboard

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Aside: imaginary and absorptive part

- scattering matrix S: $|X\rangle_{in} = S|X\rangle_{out}$
 - \rightsquigarrow transition amplitude ${}_{\rm out}\langle f|i\rangle_{\rm in} = {}_{\rm out}\langle f|\mathcal{S}|i\rangle_{\rm out}$
- S is unitary: $S^{\dagger}S = 1$

 \rightarrow blackboard

- ► S = 1 + iT ... leave out factors 2π etc. S unitary $\Rightarrow \frac{1}{i}(T - T^{\dagger}) = T^{\dagger}T$
- ▶ absorptive part: ¹/_i ⟨f|T − T[†]|i⟩ = ∑_X ⟨f|T[†]|X⟩⟨X|T|i⟩ on-shell intermediate states possible between i and f in simple cases and with appropriate phase conventions:

absorptive part $= 2 \times \text{ imaginary part of amplitude}$

• for f = i get optical theorem

$$2 \operatorname{Im}\langle i | \mathcal{T} | i \rangle = \sum_{X} \left| \langle X | \mathcal{T} | i \rangle \right|^{2} \propto \sigma_{tot}$$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Real and imaginary part for brevity suppress $\sum_q e_q^2$ and arguments t, Q^2

$$\mathcal{H}(\xi) = \int_{-1}^{1} dx \, H(x,\xi) \left[\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right]$$

 $\operatorname{Im} \mathcal{H}(\xi) = \pi \left[H(\xi, \xi) - H(-\xi, \xi) \right]$

$$\operatorname{Re} \mathcal{H}(\xi) = \operatorname{PV} \int_{-1}^{1} dx \, H(x,\xi) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right]$$

- Im only involves H at x = ±ξ at LO at NLO and higher: only DGLAP region |x| ≥ ξ
- Re involves both DGLAP and ERBL regions
- deconvolution problem:

reconstruction of $H(x,\xi;\mu^2)$ from $\mathcal{H}(\xi,Q^2)$ only via Q^2 dep'ce i.e. via evolution effects, requires large lever arm in Q^2 at given ξ

Properties Impa	act parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000 000	000000	00000	0	00000	00	0

Why DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Why not only DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed
- ▶ only quark flavor combination ⁴/₉u + ¹/₉d + ¹/₉s with neutron target in addition ⁴/₉d + ¹/₉u + ¹/₉s
- gluons only through Q² dependence
 via LO evolution, NLO hard scattering most promonent at small x, ξ

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	0

Why not only DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed
- ▶ only quark flavor combination ⁴/₉u + ¹/₉d + ¹/₉s with neutron target in addition ⁴/₉d + ¹/₉u + ¹/₉s
- gluons only through Q² dependence via LO evolution, NLO hard scattering most promonent at small x, ξ
- useful to get information from meson production

• e.g.
$$\mathcal{A}_{\rho^0} \propto \frac{2}{3}(u+\bar{u}) + \frac{1}{3}(d+\bar{d}) + \frac{3}{4}g$$

 $\mathcal{A}_{\phi} \propto \frac{1}{3}(s+\bar{s}) + \frac{1}{4}g$

- but theory description more difficult meson wave function, larger corrections in 1/Q² and α_s
- J/Ψ production: directly sensitive to gluons

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	•0	0

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

analogy with optics:

- DVCS \sim diffraction experiment
- BH \sim reference beam with known phase

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	•0	0

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

 \blacktriangleright cross section for $\ell p \to \ell \gamma p$

$$\frac{d\sigma_{\rm VCS}}{dx_B \, dQ^2 \, dt} : \frac{d\sigma_{\rm BH}}{dx_B \, dQ^2 \, dt} \sim \frac{1}{y^2} \frac{1}{Q^2} : \frac{1}{t} \qquad \qquad y = \frac{Q^2}{x_B \, s_{\ell p}}$$

- ▶ $1/Q^2$ and 1/t from photon propagators $1/y^2$ from vertex $e \rightarrow e\gamma^*$
- small y: σ_{VCS} dominates → high-energy collisions moderate to large y: get VCS via interference with BH → separate Re A(γ*p → γp) and Im A(γ*p → γp)

	Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
······································	000	0000000	00000	0	00000	0.	0

general structure:

- filter out interference term using cross section dependence on
 - ▶ beam charge *e*_ℓ
 - \blacktriangleright azimuth ϕ
 - beam polarization P_{ℓ}
 - target polarizaton S_L , S_T , ϕ_S

 $d\sigma(\ell p \to \ell \gamma p) \sim d\sigma^{BH} + \underline{e_{\ell}} \, d\sigma^{I} + d\sigma^{C}$

Properties	Impact parameter	Spin	Evolution	Processes	$ep \rightarrow ep\gamma$	Summary
000	0000000	00000	0	00000	00	•

Summary of part 4

- generalised parton distributions: extend factorisation concept to exclusive processes
- factorisation of amplitude instead of cross section
- access to transverse spatial distribution of partons and to orbital angular momentum