QCD and hadron structure
Part 6: Double parton scattering

M. Diehl
Deutsches Elektronen-Synchroton DESY

Ecole Joliot Curie 2018
Hadron-hadron collisions

- standard description based on factorization formulae

\[
\text{cross sect} = \text{parton distributions} \times \text{parton-level cross sect}
\]

- factorization formulae are for inclusive cross sections \(pp \rightarrow Y + X \)
 where \(Y = \) produced in parton-level scattering, specified in detail
 \(X = \) summed over, no details
Hadron-hadron collisions

- standard description based on factorization formulae

\[\text{cross sect} = \text{parton distributions} \times \text{parton-level cross sect} \]

- factorization formulae are for inclusive cross sections \(pp \rightarrow Y + X \)

 where \(Y \) = produced in parton-level scattering, specified in detail

 \(X \) = summed over, no details

- also have interactions between “spectator” partons

 their effects cancel in inclusive cross sections thanks to unitarity

 but they affect the final state \(X \)

- spectator interactions can be soft (low \(p_T \) scattering) \(\rightsquigarrow \) underlying event

 or hard \(\rightsquigarrow \) multiparton interactions

- here: concentrate on hard double parton scattering (DPS)
Single vs. double hard scattering

▶ example: prod’n of two gauge bosons, transverse momenta q_1 and q_2

single scattering:

$|q_1|$ and $|q_1| \sim$ hard scale Q^2

$|q_1 + q_2| \ll Q^2$

▶ for transv. mom. $\sim \Lambda \ll Q$:

$$\frac{d\sigma_{\text{single}}}{d^2q_1 d^2q_2} \sim \frac{d\sigma_{\text{double}}}{d^2q_1 d^2q_2} \sim \frac{1}{Q^4 \Lambda^2}$$

but single scattering populates larger phase space:

$$\sigma_{\text{single}} \sim \frac{1}{Q^2} \gg \sigma_{\text{double}} \sim \frac{\Lambda^2}{Q^4}$$
Single vs. double hard scattering

▶ example: prod’n of two gauge bosons, transverse momenta \(q_1 \) and \(q_2 \)

\[
\begin{align*}
|q_1| & \text{ and } |q_1| \sim \text{ hard scale } Q^2 \\
|q_1 + q_2| & \ll Q^2 \\
\end{align*}
\]

▶ double scattering favored at small \(x \) (high energies):

densities for two partons rise faster than for single parton
A numerical example

gauge boson pair production

\[\begin{align*}
W^+ & \rightarrow W^+ W^+ \\
W^+ & \rightarrow W^+ W^+
\end{align*} \]

single scattering:
\[qq \rightarrow qq + W^+ W^+ \]
suppressed by \(\alpha_s^2 \)

integrated cross section

\[\sigma \text{(nb)} \]

CM energy (TeV)

J Gaunt et al, arXiv:1003.3953
Feynman graphs: momentum vs. distance

- large (plus or minus) momenta of partons $x_i p, \bar{x}_i \bar{p}$ fixed by final state exactly as for single hard scattering
- transverse parton momenta not the same in amplitude A and in A^*
 cross section $\propto \int d^2 r \ F(x_i, k_i, r) F(\bar{x}_i, \bar{k}_i, -r)$
- Fourier trf. to impact parameter: $F(x_i, k_i, r) \rightarrow F(x_i, k_i, y)$
 cross section $\propto \int d^2 y \ F(x_i, k_i, y) F(\bar{x}_i, \bar{k}_i, y)$
- interpretation: $y = \text{transv. dist. between two scattering partons}$
 $= \text{equal in both colliding protons}$

\[q^2 \]
\[q^1 \]
\[k^1 - 1 \frac{r}{2} \]
\[k^2 + 1 \frac{r}{2} \]
\[k^2 - 1 \frac{r}{2} \]
\[k^1 + 1 \frac{r}{2} \]
\[r \]
\[\bar{r} \]
\[p \]
\[\bar{p} \]
\[\Rightarrow r + \bar{r} = 0 \]

\[\Rightarrow r + \bar{r} = 0 \]
DPS cross section: collinear factorisation

\[
\frac{d\sigma_{\text{double}}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2y \ F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)
\]

- \(C = \) combinatorial factor
- \(\hat{\sigma}_i = \) parton-level cross sections
- \(F(x_1, x_2, y) = \) double parton distribution (DPD)
- \(y = \) transv. distance between partons

- follows from Feynman graphs and hard-scattering approximation
 no semi-classical approximation required
- can make \(\hat{\sigma}_i\) differential in further variables (e.g. for jet pairs)
- can extend \(\hat{\sigma}_i\) to higher orders in \(\alpha_s\)
 get usual convolution integrals over \(x_i\) in \(\hat{\sigma}_i\) and \(F\)

Paver, Treleani 1982, 1984; Mekhfi 1985, . . . , MD, Ostermeier, Schäfer 2012
DPS cross section: TMD factorisation

- for measured transv. momenta

\[
\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, d^2q_1 \, dx_2 \, d\bar{x}_2 \, d^2q_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \\
\times \int \frac{d^2z_1}{(2\pi)^2} \frac{d^2z_2}{(2\pi)^2} e^{-i(z_1 q_1 + z_2 q_2)} \int d^2y \, F(x_i, z_i, y) F(\bar{x}_i, z_i, y)
\]

- \(F(x_i, z_i, y) = \) double-parton TMDs
 \(z_i = \) Fourier conjugate to parton transverse mom. \(k_i\)

- operator definition as for TMDs: schematically have

\[
F(x_i, z_i, y) = \mathcal{F}T_{z_i \to x_i p^+} \langle p| \bar{q}(-\frac{1}{2} z_2) \Gamma_2 q(\frac{1}{2} z_2) \bar{q}(y - \frac{1}{2} z_1) \Gamma_1 q(y + \frac{1}{2} z_1) |p\rangle
\]

- to be completed by renormalisation, Wilson lines, soft factors
- essential for studying factorisation, scale and rapidity dependence

M. Diehl
QCD and hadron structure
DPS cross section: TMD factorisation

- for measured transv. momenta

\[
\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, d^2q_1 \, dx_2 \, d\bar{x}_2 \, d^2q_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2 \\
\quad \times \int \frac{d^2z_1}{(2\pi)^2} \, \frac{d^2z_2}{(2\pi)^2} \, e^{-i(z_1 q_1 + z_2 q_2)} \int d^2y \, F(x_i, z_i, y) \, F(\bar{x}_i, z_i, y)
\]

- \(F(x_i, z_i, y) = \) double-parton TMDs

 \(z_i = \) Fourier conjugate to parton transverse mom. \(k_i \)

- operator definition as for TMDs: schematically have

\[
F(x_i, z_i, y) = \mathcal{FT} \, \left\langle p \right| \bar{q}(-\frac{1}{2}z_2) \Gamma_2 q(\frac{1}{2}z_2) \, \bar{q}(y - \frac{1}{2}z_1) \Gamma_1 q(y + \frac{1}{2}z_1) |p\rangle
\]

- to be completed by renormalisation, Wilson lines, soft factors
- essential for studying factorisation, scale and rapidity dependence

\[\text{M Buffing, MD, T Kasemets 2017} \]

- analogous def for collinear distributions \(F(x_i, y) \)

 \(\Rightarrow \) not a twist-four operator but product of two twist-two operators
Pocket formula

- make simplest possible assumptions
- if two-parton density factorises as
 \[F(x_1, x_2, y) = f(x_1) f(x_2) G(y) \]
 where \(f(x_i) = \) usual PDF
- if assume same \(G(y) \) for all parton types
 then cross sect. formula turns into
 \[
 \frac{d\sigma_{\text{double}}}{dx_1 \, \bar{x}_1 \, dx_2 \, \bar{x}_2} = \frac{1}{C} \frac{d\sigma_1}{dx_1 \, \bar{x}_1} \frac{d\sigma_2}{dx_2 \, \bar{x}_2} \frac{1}{\sigma_{\text{eff}}}
 \]
 with \(1/\sigma_{\text{eff}} = \int d^2 y \, G(y)^2 \)
 \(\approx \) scatters are completely independent
- used in bulk of phenomenological estimates
- underlies modeling of MPI in Pythia, Herwig, . . . (with some refinements)
- fails if any of the above assumptions is invalid
 or if original cross sect. formula misses important contributions
Experimental investigations (incomplete)

- CDF 4 jets (1993)
- CDF $\gamma + 3$ jets (1997)
- CDF reanalysis, Bahr et al (2013)
- D0 $\gamma + 3$ jets (2009)
- D0 $\gamma + 3$ jets (2014)
- D0 $\gamma + 2$ jets + b/c jet (2014)
- D0 2 $\gamma + 2$ jets (2015)
- CMS W + 2 jets (2013)
- ATLAS W + 2 jets (2013)
- ATLAS 4 jets (2016)
- LHCb $\Upsilon + D$ (2015)
- LHCb $J/\Psi + J/\Psi$ (2011)
- D0 $J/\Psi + J/\Psi$ (2014)
- D0 $J/\Psi + \Upsilon$ (2015)
- ATLAS $J/\Psi + J/\Psi$ (2016)

Other channels:
- double open charm $C + C$ with $C = D^0, D^+, D_s^+, \Lambda_c^+$
 LHCb 2012
- $W + J/\Psi$, $Z + J/\Psi$
 ATLAS 2014, 2015
- $\Upsilon + \Upsilon$ (estimate $\sigma_{\text{eff}} \approx 2.2 \div 6.6 \text{ mb}$)
 CMS 2016
- same-sign WW (LHC run 2)
 CMS 2017
Parton correlations

- If neglect correlations between two partons
 \[F(x_1, x_2, y) = \int d^2 b \ f(x_2, b) f(x_1, b + y) \]

 where \(f(x_i, b) = \) impact parameter dependent single-parton density

- And if neglect correlations between \(x \) and \(y \) of single parton
 \[f(x_i, b) = f(x_i) F(b) \]

 then
 \[F(x_1, x_2, y) = f(x_1) f(x_2) \int d^2 b \ F(b) F(b + y) \]
Parton correlations

- if neglect correlations between two partons
 \[F(x_1, x_2, y) = \int d^2 b \ f(x_2, b) \ f(x_1, b + y) \]
 where \(f(x_i, b) = \text{impact parameter dependent single-parton density} \)

- and if neglect correlations between \(x \) and \(y \) of single parton
 \[f(x_i, b) = f(x_i) F(b) \]

- then \[F(x_1, x_2, y) = f(x_1) f(x_2) \int d^2 b \ F(b) \ F(b + y) \]

- information on \(f(x, b) \) from study of GPDs and elastic form factors

 ⊕ measurements of double parton scattering
 → complete independence between two partons disfavored

Parton correlations

at certain level of accuracy expect correlations between

▶ x_1 and x_2 of partons
 - most obvious: energy conservation $\Rightarrow x_1 + x_2 \leq 1$
 - significant $x_1 - x_2$ correlations found in quark models
 Chang, Manohar, Waalewijn 2012; Rinaldi et al 2013–16
 Broniowski et al 2013–16; Kasemets, Mukherjee 2016

• x_i and y
 even for single partons see correlations between x and b distribution
 - HERA results on $\gamma p \rightarrow J/\Psi p$ give
 $\langle b^2 \rangle \propto \text{const} + 4\alpha' \log(1/x)$ with $4\alpha' \approx (0.16 \text{ fm})^2$
 for gluons with $x \sim 10^{-3}$
 - lattice calculations of x^0, x^1, x^2 moments
 \rightarrow strong decrease of $\langle b^2 \rangle$ with x above ~ 0.1

plausible to expect similar correlations in double parton distributions
even if two partons not uncorrelated
Consequence for multiple interactions

- indications for decrease of \(\langle y^2 \rangle \) with \(x \)
- if interaction 1 produces high-mass system
 - have large \(x_1, \bar{x}_1 \)
 - smaller \(y \) → more central collision
 - secondary interactions enhanced

Frankfurt, Strikman, Weiss 2003

studies in Pythia: Corke, Sjöstrand 2011; Blok, Gunnellini 2015
Colour structure

- quark lines in amplitude and its conjugate can couple to color singlet or octet:

\[
1F \rightarrow (\bar{q}_2 \Gamma q_2) (\bar{q}_1 \Gamma q_1) \quad 8F \rightarrow (\bar{q}_2 t^\alpha q_2) (\bar{q}_1 t^\alpha q_1)
\]

- \(8F\) describes color correlation between quarks 1 and 2 is essentially unknown (no probability interpretation as a guide)
- for two-gluon dist’s more color structures
- color correlations suppressed by Sudakov logarithms

... but not necessarily negligible for moderately hard scales

Manohar, Waalewijn arXiv:1202:3794

\[U = \text{Sudakov factor, } Q = \text{hard scale}\]
Double parton scattering: ultraviolet problem

\[
\frac{d\sigma_{\text{DPS}}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 y \ F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)
\]

for \(y \ll 1/\Lambda \) can compute

\[
F(x_1, x_2, y) \sim \frac{1}{y^2} \text{ splitting fct \(\otimes \) usual PDF}
\]

gives strong correlations in colour and spin
Double parton scattering: ultraviolet problem

\[
\frac{d\sigma_{\text{DPS}}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 y \ F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)
\]

▶ for \(y \ll 1/\Lambda \) can compute

\[
F(x_1, x_2, y) \sim \frac{1}{y^2} \text{ splitting fct } \otimes \text{ usual PDF}
\]

gives UV divergent cross section \(\propto \int d^2 y / y^4 \)
in fact, formula not valid for \(|y| \sim 1/Q \)

▶ problem also for two-parton TMDs

UV divergences logarithmic instead of quadratic
... and more problems

- **double counting** problem between double scattering with splitting (1v1) and single scattering at loop level

 MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012
 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012
 already noted by Cacciari, Salam, Sapeta 2009

- also have graphs with splitting in one proton only: “2v1”

\[\sim \int \frac{d^2 y}{y^2} \times F_{\text{int}}(x_1, x_2, y) \]

B Blok et al 2011-13
J Gaunt 2012
B Blok, P Gunnellini 2015
A consistent solution

MD, J. Gaunt, K. Schönwald 2017

regulate DPS: \(\sigma_{\text{DPS}} \propto \int d^2 y \ \Phi^2(\nu y) \ F(x_1, x_2, y) \ F(\bar{x}_1, \bar{x}_2, y) \)

- \(\Phi \to 0 \) for \(u \to 0 \) and \(\Phi \to 1 \) for \(u \to \infty \), e.g. \(\Phi(u) = \theta(u - 1) \)
- cutoff scale \(\nu \sim Q \)
- \(F(x_1, x_2, y) \) has both splitting and 'intrinsic' contributions

analogous regulator for transverse-momentum dependent DPDs

keep definition of DPDs as operator matrix elements

cutoff in \(y \) does not break symmetries that haven't already been broken
A consistent solution

regulate DPS: \(\sigma_{\text{DPS}} \propto \int d^2y \ \Phi^2(\nu y) \ F(x_1, x_2, y) \ F(\bar{x}_1, \bar{x}_2, y) \)

- \(\Phi \to 0 \) for \(u \to 0 \) and \(\Phi \to 1 \) for \(u \to \infty \), e.g. \(\Phi(u) = \theta(u - 1) \)
- cutoff scale \(\nu \sim Q \)
- \(F(x_1, x_2, y) \) has both splitting and 'intrinsic' contributions

analogous regulator for transverse-momentum dependent DPDs

full cross section: \(\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} + \sigma_{\text{SPS}} \)

- subtraction \(\sigma_{\text{sub}} \) to avoid double counting:
 \(= \sigma_{\text{DPS}} \) with \(F \) computed for small \(y \) in fixed order perturb. theory
 much simpler computation than \(\sigma_{\text{SPS}} \) at given order
A consistent solution

MD, J. Gaunt, K. Schönwald 2017

- regulate DPS: \(\sigma_{\text{DPS}} \propto \int d^2 y \, \Phi^2(\nu y) \, F(x_1, x_2, y) \, F(\bar{x}_1, \bar{x}_2, y) \)
 - \(\Phi \to 0 \) for \(u \to 0 \) and \(\Phi \to 1 \) for \(u \to \infty \), e.g. \(\Phi(u) = \theta(u - 1) \)
 - cutoff scale \(\nu \sim Q \)
 - \(F(x_1, x_2, y) \) has both splitting and 'intrinsic' contributions

- analogous regulator for transverse-momentum dependent DPDs

- full cross section: \(\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} (1v1 + 2v1) + \sigma_{\text{SPS}} + \sigma_{\text{tw2} \times \text{tw4}} \)
 - subtraction \(\sigma_{\text{sub}} \) to avoid double counting:
 - \(= \sigma_{\text{DPS}} \) with \(F \) computed for small \(y \) in fixed order perturb. theory
 - much simpler computation than \(\sigma_{\text{SPS}} \) at given order
 - can also include twist 2 \(\times \) twist 4 contribution and double counting subtraction for 2v1 term
Subtraction formalism at work

\[\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} + \sigma_{\text{SPS}} \]

- for \(y \sim 1/Q \) have \(\sigma_{\text{DPS}} \approx \sigma_{\text{sub}} \)
 because pert. computation of \(F \) gives good approx. at considered order
 \[\Rightarrow \sigma \approx \sigma_{\text{SPS}} \]
 dependence on \(\Phi(\nu y) \) cancels between \(\sigma_{\text{DPS}} \) and \(\sigma_{\text{sub}} \)

- for \(y \gg 1/Q \) have \(\sigma_{\text{sub}} \approx \sigma_{\text{SPS}} \)
 because DPS approximations work well in box graph
 \[\Rightarrow \sigma \approx \sigma_{\text{DPS}} \]
 with regulator fct. \(\Phi(\nu y) \approx 1 \)

- same argument for 2v1 term and \(\sigma_{\text{tw2} \times \text{tw4}} \) (were neglected above)

- subtraction formalism works order by order in perturb. theory

 J. Collins, Foundations of Perturbative QCD, Chapt. 10
Double counting in TMD factorisation for DPS

- left and right box can independently be collinear or hard:
 → DPS, DPS/SPS interference and SPS
- get nested double counting subtractions

M Buffing, MD, T Kasemets 2017
Summary

- multiparton interactions ubiquitous in hadron-hadron collisions
 - multiple hard scattering often suppressed, but not necessarily
 - in specific kinematics
 - for multi-differential cross sections, high-multiplicity final states
- double hard scattering depends on detailed hadron structure
 - transverse spatial distribution
 - different correlation and interference effects
- short-distance singularity and double counting with single scattering:
 have consistent solution using cutoff and subtraction terms
- subject of high interest for
 - control over final states at LHC
 - understanding QCD dynamics and hadron structure