
QCD and hadron structure
Part 6: Double parton scattering

M. Diehl

Deutsches Elektronen-Synchroton DESY

Ecole Joliot Curie 2018

DESY



Introduction Theory basics Correlations Problems and a solution Summary

Hadron-hadron collisions

I standard description based on factorization formulae

cross sect = parton distributions× parton-level cross sect

Z

I factorization formulae are for inclusive cross sections pp→ Y +X
where Y = produced in parton-level scattering, specified in detail

X = summed over, no details

I also have interactions between “spectator” partons
their effects cancel in inclusive cross sections thanks to unitarity
but they affect the final state X

I spectator interactions can be soft (low pT scattering)  underlying event
or hard  multiparton interactions

I here: concentrate on hard double parton scattering (DPS)

M. Diehl QCD and hadron structure 2



Introduction Theory basics Correlations Problems and a solution Summary

Hadron-hadron collisions

I standard description based on factorization formulae

cross sect = parton distributions× parton-level cross sect

I factorization formulae are for inclusive cross sections pp→ Y +X
where Y = produced in parton-level scattering, specified in detail

X = summed over, no details

I also have interactions between “spectator” partons
their effects cancel in inclusive cross sections thanks to unitarity
but they affect the final state X

I spectator interactions can be soft (low pT scattering)  underlying event
or hard  multiparton interactions

I here: concentrate on hard double parton scattering (DPS)

M. Diehl QCD and hadron structure 3



Introduction Theory basics Correlations Problems and a solution Summary

Single vs. double hard scattering

I example: prod’n of two gauge bosons, transverse momenta q1 and q2

q2

q1

single scattering:

|q1| and |q1| ∼ hard scale Q2

|q1 + q2| � Q2

q2

q1

double scattering:

both |q1| and |q1| � Q2

I for transv. mom. ∼ Λ� Q :

dσsingle

d2q1 d
2q2

∼ dσdouble

d2q1 d
2q2

∼ 1

Q4Λ2

but single scattering populates larger phase space :

σsingle ∼
1

Q2
� σdouble ∼

Λ2

Q4
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Introduction Theory basics Correlations Problems and a solution Summary

Single vs. double hard scattering

I example: prod’n of two gauge bosons, transverse momenta q1 and q2

q2

q1

single scattering:

|q1| and |q1| ∼ hard scale Q2

|q1 + q2| � Q2

q2

q1

double scattering:

both |q1| and |q1| � Q2

I double scattering favored at small x (high energies):
densities for two partons rise faster than for single parton
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A numerical example

gauge boson pair production

W+

W+

single scattering:

qq → qq +W+W+

suppressed by α2
s

W+W+

integrated cross section

J Gaunt et al, arXiv:1003.3953
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Feynman graphs: momentum vs. distance

q2

q1

k1 − 1
2r

k̄1 − 1
2
r̄ k̄1 +

1
2
r̄

k1 +
1
2rk2 +

1
2r k2 − 1

2r

k̄2 − 1
2
r̄k̄2 +

1
2
r̄

p

p̄

⇒ r + r̄ = 0

conservation

momentum

I large (plus or minus) momenta of partons xip, x̄i p̄ fixed by final state
exactly as for single hard scattering

I transverse parton momenta not the same in amplitude A and in A∗

cross section ∝
∫
d2r F (xi,ki, r)F (x̄i, k̄i,−r)

I Fourier trf. to impact parameter: F (xi,ki, r)→ F (xi,ki,y)

cross section ∝
∫
d2y F (xi,ki,y)F (x̄i, k̄i,y)

I interpretation: y = transv. dist. between two scattering partons
= equal in both colliding protons
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DPS cross section: collinear factorisation
q2

q1

x2

x̄2

x1

x̄1

dσdouble

dx1 dx̄1 dx2 dx̄2
=

1

C
σ̂1 σ̂2

∫
d2y F (x1, x2,y)F (x̄1, x̄2,y)

C = combinatorial factor

σ̂i = parton-level cross sections

F (x1, x2,y) = double parton distribution (DPD)

y = transv. distance between partons

I follows from Feynman graphs and hard-scattering approximation
no semi-classical approximation required

I can make σ̂i differential in further variables (e.g. for jet pairs)

I can extend σ̂i to higher orders in αs

get usual convolution integrals over xi in σ̂i and F

Paver, Treleani 1982, 1984; Mekhfi 1985, . . . , MD, Ostermeier, Schäfer 2012
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DPS cross section: TMD factorisation
q2

q1

x2

x̄2

x1

x̄1

I for measured transv. momenta

dσDPS

dx1 dx̄1 d2q1 dx2 dx̄2 d2q2
=

1

C
σ̂1 σ̂2

×
∫

d2z1

(2π)2
d2z2

(2π)2
e−i(z1q1+z2q2)

∫
d2y F (xi,zi,y)F (x̄i,zi,y)

I F (xi,zi,y) = double-parton TMDs

zi = Fourier conjugate to parton transverse mom. ki

I operator definition as for TMDs: schematically have

F (xi,zi,y) = FT
zi−→ xip+

〈p|q̄
(
− 1

2
z2
)
Γ2 q

(
1
2
z2
)
q̄
(
y − 1

2
z1
)
Γ1 q

(
y + 1

2
z1
)
|p〉

• to be completed by renormalisation, Wilson lines, soft factors

• essential for studying factorisation, scale and rapidity dependence

M Buffing, MD, T Kasemets 2017

• analogous def for collinear distributions F (xi,y)
⇒ not a twist-four operator but product of two twist-two operators
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Pocket formula

I make simplest possible assumptions

I if two-parton density factorises as

F (x1, x2,y) = f(x1) f(x2)G(y)

where f(xi) = usual PDF

I if assume same G(y) for all parton types
then cross sect. formula turns into

dσdouble

dx1 dx̄1 dx2 dx̄2
=

1

C

dσ1

dx1 dx̄1

dσ2

dx2 dx̄2

1

σeff

with 1/σeff =
∫
d2y G(y)2

 scatters are completely independent

I used in bulk of phenomenological estimates

I underlies modeling of MPI in Pythia, Herwig, . . . (with some refinements)

I fails if any of the above assumptions is invalid
or if original cross sect. formula misses important contributions
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Experimental investigations (incomplete)

ATLAS J/Ψ + J/Ψ (2016)
D0 J/Ψ + Υ (2015)

D0 J/Ψ + J/Ψ (2014)
LHCb J/Ψ + J/Ψ (2011)

LHCb Υ + D (2015)
ATLAS 4 jets (2016)

ATLAS W + 2 jets (2013)
CMS W + 2 jets (2013)

D0 2 γ + 2 jets (2015)
D0 γ + 2 jets + b/c jet (2014)

D0 γ + 3 jets (2014)
D0 γ + 3 jets (2009)

CDF reanalysis, Bahr et al (2013)
CDF γ + 3 jets (1997)

CDF 4 jets (1993)

 0  5  10  15  20  25  30

σeff [mb]

I other channels:

• double open charm C + C with C = D0, D+, D+
s ,Λ

+
c LHCb 2012

• W + J/Ψ, Z + J/Ψ ATLAS 2014, 2015

• Υ + Υ (estimate σeff ≈ 2.2÷ 6.6 mb) CMS 2016

• same-sign WW (LHC run 2) CMS 2017
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Parton correlations

I if neglect correlations between two partons

F (x1, x2,y) =
∫
d2b f(x2, b) f(x1, b + y)

where f(xi, b) = impact parameter dependent single-parton density

and if neglect correlations between x and y of single parton

f(xi, b) = f(xi)F (b)

then F (x1, x2,y) = f(x1) f(x2)
∫
d2b F (b)F (b + y)

≈
∫
d2b

b + yb ×

2

y

22

x2

x1 x1

x2
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Parton correlations

I if neglect correlations between two partons

F (x1, x2,y) =
∫
d2b f(x2, b) f(x1, b + y)

where f(xi, b) = impact parameter dependent single-parton density

and if neglect correlations between x and y of single parton

f(xi, b) = f(xi)F (b)

then F (x1, x2,y) = f(x1) f(x2)
∫
d2b F (b)F (b + y)

I information on f(x, b) from study of GPDs and elastic form factors
⊕ measurements of double parton scattering
→ complete independence between two partons disfavored

cf. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003-04; Blok et al 2013
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Parton correlations

at certain level of accuracy expect correlations between

I x1 and x2 of partons

• most obvious: energy conservation ⇒ x1 + x2 ≤ 1
• significant x1 – x2 correlations found in quark models

Chang, Manohar, Waalewijn 2012; Rinaldi et al 2013–16

Broniowski et al 2013–16; Kasemets, Mukherjee 2016

• xi and y

even for single partons see correlations between x and b distribution

• HERA results on γp→ J/Ψ p give

〈b2〉 ∝ const + 4α′ log(1/x) with 4α′ ≈ (0.16 fm)2

for gluons with x ∼ 10−3

• lattice calculations of x0, x1, x2 moments
→ strong decrease of 〈b2〉 with x above ∼ 0.1

plausible to expect similar correlations in double parton distributions
even if two partons not uncorrelated
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Consequence for multiple interactions

I indications for decrease of 〈y2〉 with x

I if interaction 1 produces high-mass system p1 p2

b1 b2
   

   

→ have large x1, x̄1
→ smaller y → more central collision
→ secondary interactions enhanced

Frankfurt, Strikman, Weiss 2003
studies in Pythia: Corke, Sjöstrand 2011; Blok, Gunnellini 2015
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Colour structure

q2

q1

I quark lines in amplitude and its conjugate
can couple to color singlet or octet:

1F → (q̄211q2) (q̄111q1) 8F → (q̄2 t
aq2) (q̄1 t

aq1)

I 8F describes color correlation between quarks 1 and 2
is essentially unknown (no probability interpretation as a guide)

I for two-gluon dist’s more color structures

I color correlations suppressed by Sudakov logarithms Mekhfi 1988

. . . but not necessarily negligible
for moderately hard scales

Manohar, Waalewijn arXiv:1202:3794

U = Sudakov factor, Q = hard scale

U
�

Μ UΝ

U
�

Μ only

10 100 1000
0.

0.2
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0.6

0.8

1.

Q
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Double parton scattering: ultraviolet problem

dσDPS

dx1dx̄1 dx2dx̄2
=

1

C
σ̂1 σ̂2

∫
d2y F (x1, x2,y)F (x̄1, x̄2,y) q2

q1

x2

x̄2

x1

x̄1

I for y � 1/Λ can compute

F (x1, x2,y) ∼
1

y2
splitting fct⊗ usual PDF

gives strong correlations in colour and spin
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Double parton scattering: ultraviolet problem

dσDPS

dx1dx̄1 dx2dx̄2
=

1

C
σ̂1 σ̂2

∫
d2y F (x1, x2,y)F (x̄1, x̄2,y) q2

q1

x2

x̄2

x1

x̄1

I for y � 1/Λ can compute

F (x1, x2,y) ∼
1

y2
splitting fct⊗ usual PDF

gives UV divergent cross section ∝
∫
d2y/y4

in fact, formula not valid for |y| ∼ 1/Q

I problem also for two-parton TMDs
UV divergences logarithmic instead of quadratic
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. . . and more problems

F (x̄1, x̄2,y)

F (x1, x2,y)

I double counting problem between double scattering with splitting (1v1)
and single scattering at loop level

MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012

Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012

already noted by Cacciari, Salam, Sapeta 2009

I also have graphs with splitting in one proton only: “2v1”

∼
∫
d2y/y2 × Fint(x1, x2,y)

B Blok et al 2011-13

J Gaunt 2012

B Blok, P Gunnellini 2015
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A consistent solution MD, J. Gaunt, K. Schönwald 2017

I regulate DPS: σDPS ∝
∫
d2y Φ2(νy) F (x1, x2,y)F (x̄1, x̄2,y)

• Φ→ 0 for u→ 0 and Φ→ 1 for u→∞ , e.g. Φ(u) = θ(u− 1)

• cutoff scale ν ∼ Q
• F (x1, x2,y) has both splitting and ’intrinsic’ contributions

analogous regulator for transverse-momentum dependent DPDs

I keep definition of DPDs as operator matrix elements

cutoff in y does not break symmetries that haven’t already been broken

I full cross section: σ = σDPS − σsub + σSPS

• subtraction σsub to avoid double counting:
= σDPS with F computed for small y in fixed order perturb. theory

much simpler computation than σSPS at given order

• can also include twist 2 × twist 4 contribution
and double counting subtraction for 2v1 term
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A consistent solution MD, J. Gaunt, K. Schönwald 2017

I regulate DPS: σDPS ∝
∫
d2y Φ2(νy) F (x1, x2,y)F (x̄1, x̄2,y)

• Φ→ 0 for u→ 0 and Φ→ 1 for u→∞ , e.g. Φ(u) = θ(u− 1)

• cutoff scale ν ∼ Q
• F (x1, x2,y) has both splitting and ’intrinsic’ contributions

analogous regulator for transverse-momentum dependent DPDs

I full cross section: σ = σDPS − σsub (1v1 + 2v1) + σSPS + σtw2×tw4

• subtraction σsub to avoid double counting:
= σDPS with F computed for small y in fixed order perturb. theory

much simpler computation than σSPS at given order

• can also include twist 2 × twist 4 contribution
and double counting subtraction for 2v1 term
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Subtraction formalism at work

F (x̄1, x̄2,y)

F (x1, x2,y)

σ = σDPS − σsub + σSPS

I for y ∼ 1/Q have σDPS ≈ σsub

because pert. computation of F gives good approx. at considered order
⇒ σ ≈ σSPS dependence on Φ(νy) cancels between σDPS and σsub

I for y � 1/Q have σsub ≈ σSPS

because DPS approximations work well in box graph
⇒ σ ≈ σDPS with regulator fct. Φ(νy) ≈ 1

I same argument for 2v1 term and σtw2×tw4 (were neglected above)

I subtraction formalism works order by order in perturb. theory
J. Collins, Foundations of Perturbative QCD, Chapt. 10
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Double counting in TMD factorisation for DPS

F (x̄1, x̄2,y)

F (x1, x2,y)

I left and right box can independently be collinear or hard:

 DPS, DPS/SPS interference and SPS

I get nested double counting subtractions
M Buffing, MD, T Kasemets 2017
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Summary

I multiparton interactions ubiquitous in hadron-hadron collisions
multiple hard scattering often suppressed, but not necessarily

• in specific kinematics
• for multi-differential cross sections, high-multiplicity final states

I double hard scattering depends on detailed hadron structure

• transverse spatial distribution
• different correlation and interference effects

I short-distance singularity and double counting with single scattering:
have consistent solution using cutoff and subtraction terms

I subject of high interest for

• control over final states at LHC
• understanding QCD dynamics and hadron structure
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